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A B S T R A C T 

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential equation that has a key role in wave physics and 

many other disciplines. In this article, we develop numerical solutions of the KdV equation using the finite difference 

method with the Crank-Nicolson scheme. We explain the basic theory behind the KdV equation and the finite difference 

method, and outline the implementation of the Crank-Nicolson scheme in this context. We also give an overview of the 

space and time discretization and initial conditions used in the simulation. The results of these simulations are presented 

through graphical visualizations, which allow us to understand how the KdV solution evolves over time. Through analysis 

of the results, we explore the behavior of the solutions and perform comparisons with exact solutions in certain cases. Our 

conclusion summarizes our findings and discusses the advantages and limitations of the method used. We also provide 

suggestions for future research in this area. 
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1. Introduction 

Differential Partial Equations are widely used in 

mathematical physics problem. The solution can be founded 

analytically, but the most of partial differential equations are 

difficult to solve. Then, it needs a numerical method to find 

the solutions. One of example is Nonlinear Schrödinger 

Equations by using Petviashvili method (Nuzla, 2022). 

Another example of differential partial equations is the 

Korteweg-de Vries (KdV). KdV equation is a nonlinear partial 

differential equation used as a mathematical model for waves 

on the surface of shallow water. It was first introduced by 

Korteweg and de Vries in 1895 as a mathematical model for 

water waves in a flat and wide channel (Suryanto, 2017). The 

KdV equation is a nonlinear equation for which numerical 

solutions can be found both analytically and numerically. It is 

a nonlinear wave equation, and its solutions are not always 

obtainable exactly (Butcher, 2008). The KdV equation is also 

known as a prototype of a model that can be solved exactly, 

meaning it allows for precise and accurate determination of its 

solutions (Causon & Mingham, 2010). 

The Korteweg-de Vries equation has three terms: the 

nonlinear term, the dissipative term, and the term involving 

the time derivative (t). In general, the Korteweg-de Vries 

equation can be written as follows. 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑠𝑢𝑥𝑥𝑥 = 0 (1.1) 

where 𝑢𝑢𝑥 is the nonlinear term, and 𝑠𝑢𝑥𝑥𝑥  is the dissipative 

term. Equation (1.1) has two independent variables, 𝑥 and 𝑡, 

as well as the dependent variable 𝑢, which represents the 

wave amplitude. 

The solutions to the Korteweg-De Vries equation can be 

obtained through various methods, both analytically and 

numerically. Numerical solutions of the KdV equation can be 

found using methods such as spectral methods, finite 

difference methods, differential transformation methods, and 

others (Djojodihardjo, 2000). Meanwhile, for analytical 

solutions of the Korteweg-De Vries equation, the solutions are 

obtained as follows. 

𝑢(𝑥, 𝑡) =
2𝑠𝑘2

𝛼
 𝑠𝑒𝑐ℎ2(𝑘(𝑥 − 42𝑠𝑘2𝑡)). (1.2) 

The above analytical solution describes a soliton 

propagating along t. Based on the analytical solution, it is 

known that the dispersive coefficient affects the height and 

speed of soliton propagation, with larger values of s resulting 

in higher and faster propagation (Daxois & Michel, 2010). The 

finite difference method is one of numerical method for 

solving ordinary and partial differential equations. This 

method can describe the stable solution and convergence to 
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the analytical solution. The finite difference method is based 

on Taylor series expansion, which leads to backward, forward, 

and central difference equations (Hasan, et al, 2016).  

This research will discuss the numerical solution of the 

Korteweg-De Vries equation using the finite difference 

method. The numerical solution of the Korteweg-De Vries 

equation will be aided by analytical tools using Wolfram 

Mathematica 13 for Windows and MATLAB software.  

2. Methodology 

In this section, the method used to solve the problem of 

the numerical solution of the Korteweg-De Vries equation 

using the finite difference method will be explained. This 

research is based on a previous article about the numerical 

solution of the Korteweg-De Vries equation using the spectral 

method (Yin, et al, 2023). In this study, Wolfram Mathematica 

13 for Windows software is used. 

 

Figure 3.1 Flowchart of how to find the numerical solution of KDV 

Equation 

2.1 Finite Difference Method 

The selection of the method to solve the problem of the 

numerical solution of the Kortweg-De Vries equation is the 

finite difference method, and it will be assisted by the use of 

mathematical analysis software, Wolfram Mathematica 13 for 

Windows and POM QM. The finite difference method is a 

commonly used numerical method for solving technical issues 

and mathematical problems related to physical phenomena 

(Munir, 2010). Its principle involves replacing the derivatives 

in a differential equation with finite difference discretization 

based on Taylor series. Physically, the Taylor series can be 

interpreted as a quantity observed in a certain space and time 

(observed space and time) that can be calculated from the 

same quantity at specific space and time points, with small 

differences in observed space and time (Rumlawang, 2013). 

If 𝑓 and all its derivatives 𝑓’, 𝑓’’, 𝑓’’’, …, exist in the 

interval [𝑎, 𝑏], then the value of 𝑓(𝑥) for 𝑥 around 𝑥0 and 𝑥 

∈ [𝑎, 𝑏] can be expanded into a Taylor series (Suryanto, 

2017): 

𝑓(𝑥) = 𝑓(𝑥0) +
(𝑥 − 𝑥0)

1!
𝑓′(𝑥0) +

(𝑥 − 𝑥0)
2

2!
𝑓′′(𝑥0)

+ ⋯+ 
(𝑥 − 𝑥0)

𝑚

𝑚!
𝑓𝑚(𝑥0) + ⋯ 

(2.1) 

If 𝑥 − 𝑥0 = ℎ, then 𝑓(𝑥) is: 

𝑓(𝑥) = 𝑓(𝑥0) +
ℎ

1!
𝑓′(𝑥0) +

ℎ2

2!
𝑓′′(𝑥0) + ⋯

+ 
(ℎ)𝑚

𝑚!
𝑓𝑚(𝑥0) + ⋯ 

(2.2) 

Several finite difference schemes will be explained as 

follows: 

1. Forward Scheme 

By using the first three terms on the right-hand side of 

the Taylor series in equation (2.1), we obtain: 

𝑓(1)(𝑥𝑖) =
𝑓(𝑥𝑖 + ∆𝑥 − 𝑓(𝑥𝑖)

∆𝑥
−

∆𝑥

2!
𝑓(2)(𝑥𝑖) 

𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑖

=
𝑓(𝑥𝑖 + ∆𝑥) − 𝑓(𝑥𝑖)

∆𝑥
−

∆𝑥

2!
𝑓(2)(𝑥𝑖) 

𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑖

=
𝑓(𝑥𝑖 + ∆𝑥) − 𝑓(𝑥𝑖)

∆𝑥
 

(2.3) 

From equation (2.3), the forward scheme is said to have 

a first-order error or ð𝑥(Δ𝑥). 

As indicated by the forward scheme using a finite grid, 

the forward scheme (Lestari, 2013): 

a. Spatial Finite Difference:  

𝑑𝑓

𝑑𝑥
]
𝑖
=

𝑓𝑖+1
𝑛 − 𝑓𝑖

𝑛

∆𝑥
  or  

𝜕𝑓

𝜕𝑥
=  

𝑓𝑖+1
𝑛+1 − 𝑓𝑖

𝑛+1

∆𝑥
 

with  ∆x = 𝑥𝑖+1 − 𝑥𝑖. 
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b. Finite Difference in Time ( Finite Difference Depends on 

Time) can be implemented using one of the following 

discretization methods:  

𝑑𝑓

𝑑𝑡
]
𝑖
=

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

∆𝑡
  

or   
𝜕𝑓

𝜕𝑡
|
𝑖+1

= 
𝑓𝑖+1

𝑛+1 − 𝑓𝑖+1
𝑛

∆𝑡
 

2. Backward Scheme 

By using the first three terms from the right-hand side of 

the Taylor series, we obtain Equation (2.4): 

𝑓(𝑥𝑖 + ∆𝑥) = 𝑓(𝑥𝑖) −
(∆𝑥)2

1!
𝑓(1)(𝑥𝑖) +

(∆𝑥)2

2!
𝑓(2)(𝑥𝑖) 

𝑓(1)(𝑥𝑖) =
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ∆𝑥))

2!
−

∆𝑥

2!
𝑓(2)(𝑥𝑖) 

𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑖

=
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ∆𝑥))

2!
−

∆𝑥

2!
𝑓(2)(𝑥𝑖) 

𝑑𝑓

𝑑𝑥
]
𝑥=𝑥𝑖

=
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 + ∆𝑥)

∆𝑥
 

(2.4) 

In the forward scheme, information at the computation 

point 𝑖 is connected to the information at the point 𝑖 -1 located 

in front of it, as explained in the backward scheme: 

As shown in the scheme using the grid of finite 

differences, the backward scheme can be seen at 𝑖: 

a. Finite differences in space: 

𝑑𝑓

𝑑𝑥
]
𝑖
=

𝑓𝑖
𝑛 − 𝑓𝑖−1

𝑛

∆𝑥
 𝑜𝑟 

𝜕𝑓

𝜕𝑥
|
𝑖
= 

𝑓𝑖
𝑛+1 − 𝑓𝑖−1

𝑛+1

∆𝑥
 

b. While finite differences in time: 

𝑑𝑓

𝑑𝑡
]
𝑖−1

=
𝑓𝑖−1

𝑛+1 − 𝑓𝑖−1
𝑛

∆𝑡
 𝑜𝑟 

𝜕𝑓

𝜕𝑡
|
𝑖
= 

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

∆𝑡
 

3. Central Scheme  

If the Taylor series from equation (2.3) is subtracted from 

the Taylor series from equation (2.4), the central scheme will 

be obtained.  

As shown by the central scheme using a finite difference 

grid, the central scheme: 

a. Finite Differences in Space: 

𝑑𝑓

𝑑𝑥
]
𝑖
=

𝑓𝑖+1
𝑛 − 𝑓𝑖−1

𝑛

2∆𝑥
 𝑜𝑟  

𝜕𝑓

𝜕𝑥
|
𝑖
= 

𝑓𝑖+1
𝑛+1 − 𝑓𝑖−1

𝑛+1

2∆𝑥
 

  
𝜕2𝑓

𝜕𝑥2
|
𝑖

= 
𝜕 (

𝜕𝑓
𝜕𝑥

)

𝜕𝑥
=

(
𝜕𝑓
𝜕𝑥

)
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

− (
𝜕𝑓
𝜕𝑥

)
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

∆𝑥
 

= 

𝑓𝑖+1 − 𝑓𝑖

∆𝑥
+

𝑓𝑖+1

∆𝑥
(∆𝑥)2

=
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

(∆𝑥)2
 

𝑓𝑜𝑟 𝑡𝑛+1 𝑤𝑖𝑙𝑙 𝑏𝑒 

  
𝜕2𝑓

𝜕𝑥2
|
𝑖

= 
𝑓𝑖+1

𝑛+1 − 2𝑓𝑖
𝑛+1 + 𝑓𝑖−1

𝑛+1

(∆𝑥)2
 

b. Finite differences in time: 

𝑑𝑓

𝑑𝑡
]
𝑖−1

=
𝑓𝑖−1

𝑛+1 − 𝑓𝑖−1
𝑛

∆𝑥
 ,
𝜕𝑓

𝜕𝑡
|
𝑖
= 

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

∆𝑥

=,
𝜕𝑓

𝜕𝑡
|
𝑖+1

= 
𝑓𝑖+1

𝑛+1 − 𝑓𝑖+1
𝑛

∆𝑥
  

 𝑤𝑖𝑡ℎ ∆𝑥 = 𝑡𝑛+1 − 𝑡𝑛 . 

 

4. Leap-Frog Scheme (Leap-Frog) 

The leap-frog method is one of the finite difference 

methods that employs the central finite difference approach 

(Strauss, 2007). 

As shown in the scheme above, using a finite difference 

grid, the leap-frog scheme can be written as follows:  

a. Finite differences in space: 

𝑑𝑓

𝑑𝑥
]
𝑖
=

𝑓𝑖+1
𝑛 − 𝑓𝑖−1

𝑛

2∆𝑥
. 

b. Finite differences in time: 

𝑑𝑓

𝑑𝑥
]
𝑖
=

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛−1

2∆𝑥
 

5. Dufort-Frankel Scheme 

Using a finite difference grid, the Dufort-Frankel scheme 

can be expressed as follows: 

a. Finite differences in space: 

𝜕2𝑓

𝜕𝑥2
|
𝑖

= 
𝑓𝑖+1

𝑛 − 𝑓𝑖
𝑛+1 + 𝑓𝑖

𝑛−1𝑓𝑖−1
𝑛

(∆𝑥)2
 

b. Finite differences in time:  

𝑑𝑓

𝑑𝑡
]
𝑖
=

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛−1

2∆𝑡
 

6. Crank-Nicolson Scheme 

This scheme uses weighting techniques for discretizing 

the current time (𝑡𝑛) and the future time (𝑡𝑛+1) in a more 

flexible way, employing time weighting factors. 

a. Finite differences in space: 

𝜕2𝑓

𝜕𝑥2
|
𝑖

= �̀� (
𝑓𝑖+1

𝑛+1 − 2𝑓𝑖
𝑛+1 + 𝑓𝑖−1

𝑛+1

(∆𝑥)𝑒̀2
)

+ (1 − �̀�) (
𝑓𝑖+1

𝑛 − 2𝑓𝑖
𝑛 + 𝑓𝑖−1

𝑛

(∆𝑥)2
) 

with 0 ≤ �̀� ≥ 1is the time weighting factor. 

b. Finite differences in time: 

𝜕𝑓

𝜕𝑡
|
𝑖
=

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

𝜕𝑡
. 

2.2 Data Processing and Analysis  

Data processing and analysis are carried out using the 

finite difference method for the numerical solution of the 

Kortweg-De Vries equation with the help of analytical tools 
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using Wolfram Mathematica 13 for Windows and POM QM 

software. 

3. Result and Discussion  

In this section, we will discuss the use of finite difference 

methods in determining the numerical solution of the KdV 

equation. The numerical solutions obtained are expected to 

provide references for developing numerical codes for the 

KdV equation to achieve effective and efficient solutions. The 

KdV equation model used in this discussion is the general 

KdV equation that has been used in previous research. The 

equation used is as follows (Zhang, et al, 2014): 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 (3.1) 

here, 𝑢 is a function representing waves or solitons, 𝑡 is time, 

and 𝑥 is position in space. The KdV equation is used in various 

contexts, including the study of soliton waves in water or other 

media.  

In this section, we will discuss determining the numerical 

solution of the KdV equation using the finite difference 

method with the Crank-Nicolson scheme. The finite difference 

method is a commonly used technique for numerically solving 

partial differential equations such as the KdV equation. 

3.1 Discretization of Space and Time 

In this part, the 𝑥 -domain is divided into a number of 

grid points (discrete points) with a distance between grid 

points ∆𝑥. The time domain 𝑡 is also divided into discrete 

intervals with a distance ∆𝑡. In this section, the solution of the 

KdV equation using the Crank-Nicolson scheme will be 

explained. Discretization of time 𝑡 is done first to simplify the 

subsequent steps. The results of the discretization are as 

follows: 

𝑢𝑡 ≈
𝑢𝑖

𝑠+1 − 𝑢𝑖
𝑠

∆𝑡
 (3.2) 

 

𝑢 ≈
𝑢𝑖

𝑠 + 𝑢𝑖
𝑠+1

2
 (3.3) 

 

𝑢𝑥 ≈
𝑢𝑖+1

𝑠+1 − 𝑢𝑖−1
𝑠+1 + 𝑢𝑖+1

𝑠 − 𝑢𝑖−1
𝑠

4∆𝑥2
 (3.4) 

 

𝑢𝑥𝑥𝑥 ≈
𝑢𝑖+2

𝑠+1−2𝑢𝑖+1
𝑠+1+2𝑢𝑖−1

𝑠+1−𝑢𝑖−2
𝑠+1+𝑢𝑖+2

𝑠 −2𝑢𝑖+1
𝑠 +2𝑢𝑖−1

𝑠 −𝑢𝑖−2
𝑠

4∆𝑥3   
(3.5) 

 

Next, equations (3.2), (3.3), (3.4), (3.5) are substituted 

into the KdV equation (3.1). Based on the Crank-Nicholson 

scheme, the values of 𝑢𝑡 , 𝑢, 𝑢𝑥, and 𝑢𝑥𝑥𝑥  are combined on one 

side of the equation to simplify the calculation, resulting in: 

𝑣𝑢𝑖+2
𝑠+1 − 2𝑣𝑢𝑖+1

𝑠+1 + (1 +
1

2
𝑣∆𝑥2(𝑢𝑖+1

𝑠+1 − 𝑢𝑖−1
𝑠+1 + 𝑢𝑖+1

𝑠 −

𝑢𝑖−1
𝑠 )) 𝑢𝑖

𝑠+1 + 2𝑣𝑢𝑖−1
𝑠+1 − 𝑣𝑢𝑖−2

𝑠+1 = −𝑣𝑢𝑖+2
𝑠 + 2𝑣𝑢𝑖+1

𝑠 +

(1 −
1

2
𝑣∆𝑥2(𝑢𝑖+1

𝑠+1 − 𝑢𝑖−1
𝑠+1 + 𝑢𝑖+1

𝑠 − 𝑢𝑖−1
𝑠 )) 𝑢𝑖

𝑠 −

2𝑣𝑢𝑖−1
𝑠 + 𝑣𝑢𝑖−2

𝑠                                        (3.6)     

with the value 𝑣 being 
∆𝑡

∆𝑥2, based on the obtained calculations, 

the solution to the KdV equation can be determined through 

several iterations. The number of iterations used is n iterations 

with the condition 1 ≤ 𝑖 ≤ 𝑛 − 1. By applying these 

conditions, the matrix obtained is as follows: 

[
 
 
 
 
 
 
 
 
 

𝑐1 𝑑1 𝑒1 0 … … … … 0

𝑏2 𝑐2 𝑑2 𝑒2 0 … … … 0

𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 0 … … 0

0 𝑎4 𝑏4 𝑐4 𝑑4 𝑒4 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … 0 𝑎𝑛−4 𝑏𝑛−4 𝑐𝑛−4 𝑑𝑛−4 𝑒𝑛−4 0

0 … … 0 𝑎𝑛−3 𝑏𝑛−3 𝑐𝑛−3 𝑑𝑛−3 𝑒𝑛−3

0 … … … 0 𝑎𝑛−2 𝑏𝑛−2 𝑐𝑛−2 𝑑𝑛−2

0 … … … … 0 𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑈1

𝑠+1

𝑈2
𝑠+1

𝑈3
𝑠+1

𝑈4
𝑠+1

⋮
𝑈𝑛−4

𝑠+1

𝑈𝑛−3
𝑠+1

𝑈𝑛−2
𝑠+1

𝑈𝑛−1
𝑠+1]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 

𝑐1̃ 𝑑1̃ 𝑒1̃ 0 … … … … 0

𝑏2̃ 𝑐2̃ 𝑑2̃ 𝑒2̃ 0 … … … 0

𝑎3̃ 𝑏3̃ 𝑐3̃ 𝑑3̃ 𝑒3̃ 0 … … 0

0 𝑎4̃ 𝑏4̃ 𝑐4̃ 𝑑4̃ 𝑒4̃ 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … 0 �̃�𝑛−4 �̃�𝑛−4 �̃�𝑛−4 �̃�𝑛−4 �̃�𝑛−4 0

0 … … 0 �̃�𝑛−3 �̃�𝑛−3 �̃�𝑛−3 �̃�𝑛−3 �̃�𝑛−3

0 … … … 0 �̃�𝑛−2 �̃�𝑛−2 �̃�𝑛−2 �̃�𝑛−2

0 … … … … 0 �̃�𝑛−1 �̃�𝑛−1 �̃�𝑛−1 ]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

𝑈1
𝑠

𝑈2
𝑠

𝑈3
𝑠

𝑈4
𝑠+1

⋮
𝑈𝑛−4

𝑠

𝑈𝑛−3
𝑠

𝑈𝑛−2
𝑠

𝑈𝑛−1
𝑠 ]

 
 
 
 
 
 
 
 
 

. 

With: 

𝑎𝑗 = −𝑣, 𝑗 = 3,4, … , 𝑛 − 1 

𝑏𝑗 = 2𝑣, 𝑗 = 2,3, … , 𝑛 − 1 

𝑐𝑖 =  1 +
1

2
𝑣∆𝑥2(𝑈2

𝑠+1 + 𝑈2
𝑠) − 𝑣 

𝑐𝑗 =  1 +
1

2
𝑣∆𝑥2(𝑈𝑗+1

𝑠+1 − 𝑈𝑗−1
𝑠+1 + 𝑈𝑗+1

𝑠 − 𝑈𝑗−1
𝑠 ), 𝑗

= 2,3, … , 𝑛 − 2 

𝑐𝑛−1 =  1 +
1

2
𝑣∆𝑥2(−𝑈𝑛−2

𝑠+1 + 𝑈𝑛−2
𝑠 ) + 𝑣. 

𝑑𝑗 = −2𝑣, 𝑗 = 1,2,… , 𝑛 − 2 

𝑒𝑗 = 𝑣, 𝑗 = 1,2, … , 𝑛 − 3 

�̃�𝑗 = 𝑣, 𝑗 = 3,4, … , 𝑛 − 1 

�̃�𝑗 = −𝑣, 𝑗 = 2,3, … , 𝑛 − 1 

�̃�1 = 1 +
1

2
𝑣∆𝑥2(𝑈2

𝑠+1 + 𝑈2
𝑠) − 𝑣 

�̃�𝑗 =  1 +
1

2
𝑣∆𝑥2(𝑈𝑗+1

𝑠+1 − 𝑈𝑗−1
𝑠+1 + 𝑈𝑗+1

𝑠 − 𝑈𝑗−1
𝑠 ), 𝑗

= 2,3, … , 𝑛 − 2 

�̃�𝑛−1 =  1 +
1

2
𝑣∆𝑥2(−𝑈𝑛−2

𝑠+1 + 𝑈𝑛−2
𝑠 ) + 𝑣. 

�̃�𝑗 = 2𝑣, 𝑗 = 1,2, … , 𝑛 − 2 

�̃�𝑗 = −𝑣, 𝑗 = 1,2, … , 𝑛 − 3 

Based on the matrix description above, a system of 

equations can be formulated as follows: 
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𝐴𝑈𝑖
𝑠+1 = 𝐵�̅�𝑖

𝑠+1 (3.7) 

where 𝐴 is coefficient matrix 𝑛 − 1 ×  𝑛 −  1  and 𝐵 is 

coefficient matrix 𝑛 − 1 ×  𝑛 − 1 , 𝑈𝑖
𝑠 is constant vector 

𝑛 − 1 ×  1 and 𝑈𝑖
𝑠+1 is vector solution. 

3.2 Stability Analysis 

The stability analysis is important to determine whether 

the method used in this research is stable or not. In this 

analysis, we use the von Neumann stability analysis by 

substituting 𝑢𝑗
𝑛 = 𝜌𝑛𝑒𝑖𝑎𝑗 , with 𝑖 = √−1  into the discretized 

equation. However, equation (3.1) must be linearized to 

obtain: 

𝑢𝑡 + �̅�𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 (3.8) 

Furthermore, equation (3.11) is discretized with respect 

to 𝑡 and 𝑥, resulting in: 

𝑈𝑗
𝑛+1 − 𝑈𝑗

𝑛

∆𝑡
+

1

2
(
𝑈𝑗+1

𝑛+1 − 𝑈𝑗−1
𝑛+1

2∆𝑥
) +

1

2
(
𝑈𝑗+1

𝑛 − 𝑈𝑗−1
𝑛

2∆𝑥
)

+
1

2
[𝑈 (

𝑈𝑗+1
𝑛+1 − 𝑈𝑗−1

𝑛+1

2∆𝑥
)] +

1

2
[𝑈 (

𝑈𝑗+1
𝑛+1 − 𝑈𝑗−1

𝑛+1

2∆𝑥
)]

+
1

2
(
𝑈𝑗+2

𝑛+1 − 2𝑈𝑗+1
𝑛+1 + 2𝑈𝑗−1

𝑛+1 − 2𝑈𝑗−2
𝑛+1

2∆𝑥3
)

+
1

2
(
𝑈𝑗+2

𝑛 − 2𝑈𝑗+1
𝑛 + 2𝑈𝑗−1

𝑛 − 2𝑈𝑗−2
𝑛

2∆𝑥3
) = 0 

Next, the result is simplified to: 

𝑈𝑗
𝑛+1

∆𝑡
+

1

2
(
𝑈𝑗+1

𝑛+1 − 𝑈𝑗−1
𝑛+1

2∆𝑥
) +

1

2
[𝑈 (

𝑈𝑗+1
𝑛+1 − 𝑈𝑗−1

𝑛+1

2∆𝑥
)]

+
1

2
(
𝑈𝑗+2

𝑛+1 − 2𝑈𝑗+1
𝑛+1 + 2𝑈𝑗−1

𝑛+1 − 2𝑈𝑗−2
𝑛+1

2∆𝑥3
)

=
𝑈𝑗

𝑛

∆𝑡
+

1

2
(
𝑈𝑗+1

𝑛 − 𝑈𝑗−1
𝑛

2∆𝑥
) +

1

2
[�̅� (

𝑈𝑗+1
𝑛 − 𝑈𝑗−1

𝑛

2∆𝑥
)]

+
1

2
(
𝑈𝑗+2

𝑛 − 2𝑈𝑗+1
𝑛 + 2𝑈𝑗−1

𝑛 − 2𝑈𝑗−2
𝑛

2∆𝑥3
) 

Then, substituting the value of 𝑈𝑗
𝑛 = 𝜌𝑛𝑒𝑖𝑎𝑗 , 𝑖 =  √−1 

into the equation, we get:  

𝜌𝑛+1𝑒𝑖𝑎𝑗

∆𝑡
+

1

2
(
𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1)

2∆𝑥
)

+
1

2
[𝑈 (

𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1)

2∆𝑥
)]

+
1

2
(
𝜌𝑛+1𝑒𝑖𝑎(𝑗+2) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) + 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−2)

2∆𝑥3 )

=
𝜌𝑛𝑒𝑖𝑎𝑗

∆𝑡
+

1

2
(
𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1)

2∆𝑥
)

+
1

2
[𝑈 (

𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1)

2∆𝑥
)]

+
1

2
(
𝜌𝑛+1𝑒𝑖𝑎(𝑗+2) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗+1) + 𝜌𝑛+1𝑒𝑖𝑎(𝑗−1) − 𝜌𝑛+1𝑒𝑖𝑎(𝑗−2)

2∆𝑥3 ) 

Next, by dividing 𝜌𝑛𝑒𝑖𝑎𝑗  in order to get a simpler 

equation, we obtain:  

𝜌

∆𝑡
+

1

2
(
𝜌𝑒𝑖𝑎 − 𝜌𝑒−𝑖𝑎

2∆𝑥
) −

1

2
[�̅� (

𝜌𝑒𝑖𝑎 − 𝜌𝑒−𝑖𝑎

2∆𝑥
)]

−
1

2
(
𝜌𝑒2𝑖𝑎 − 𝜌𝑒𝑖𝑎 + 𝜌𝑒−𝑖𝑎 − 𝜌𝑒−2𝑖𝑎

2∆𝑥3 )

=
1

∆𝑡
−

1

2
(
𝑒𝑖𝑎 − 𝑒−𝑖𝑎

2∆𝑥
)

+
1

2
[�̅� (

𝑒𝑖𝑎 − 𝑒−𝑖𝑎

2∆𝑥
)]

+
1

2
(
𝑒2𝑖𝑎 − 𝑒𝑖𝑎 + 𝑒−𝑖𝑎 − 𝑒−2𝑖𝑎

2∆𝑥3
) 

From  𝑒±𝑖𝑎 = 𝑐𝑜𝑠(𝑎) ± 𝑖 𝑠𝑖𝑛(𝑎), we have: 

𝜌

∆𝑡
+

1

2
(
𝜌(cos(𝑎) + 𝑖 sin(𝑎)) − 𝜌(cos(𝑎) − 𝑖 sin(𝑎))

2∆𝑥
)

−
1

2
[�̅� (

𝜌(cos 𝑎 + 𝑖 sin 𝑎) − 𝜌(cos 𝑎 − 𝑖 sin 𝑎)

2∆𝑥
)]

1

∆𝑡

+
1

2
(
(cos(𝑎) + 𝑖 sin(𝑎)) − (cos(𝑎) − 𝑖 sin(𝑎))

2∆𝑥
) 

With algebraic calculation, we obtain: 

[1 + 𝑖Δ𝑡 [(
 sin (𝑎) − �̅�𝑠𝑖𝑛(𝑎)

2∆𝑥
) − (

sin(2𝑎) − 2𝑠𝑖𝑛(𝑎)

2∆𝑥
)]]  𝜌

− [1

− 𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
)

− (
sin  2(𝑎) − 2 sin(𝑎)

2∆𝑥
)]] = 0 

So, the value of 𝜌 can be determined as: 

𝜌 =
1 + {−𝑖Δ𝑡 [(

sin(𝑎) − �̅� sin(𝑎)
2∆𝑥

) − (
sin  2(𝑎) − 2 sin(𝑎)

2∆𝑥
)]}

1 + 𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]

 

Next, calculate |𝜌| as follows: 

|𝜌|

= |
1 + {−𝑖Δ𝑡 [(

sin(𝑎) − �̅� sin(𝑎)
2∆𝑥

) − (
sin  2(𝑎) − 2 sin(𝑎)

2∆𝑥
)]}

1 + 𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]

| 

We have |
𝑧1

𝑧2
| = |

𝑧1

𝑧2
| 𝑧1 = 𝑥 + 𝑖𝑦 and |𝑧| = √𝑥2 + 𝑦2, so: 

|𝜌|

=
|1 + {−𝑖Δ𝑡 [(

sin(𝑎) − �̅� sin(𝑎)
2∆𝑥

) − (
sin  2(𝑎) − 2 sin(𝑎)

2∆𝑥
)]}|

|1 + {𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]}|

 

|𝜌|

=

√12+{−𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]}
2

√12+{𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]}
2
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|𝜌|

=

√12+{𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]}
2

√12+{𝑖Δ𝑡 [(
sin(𝑎) − �̅� sin(𝑎)

2∆𝑥
) − (

sin  2(𝑎) − 2 sin(𝑎)
2∆𝑥

)]}
2

 

|𝜌| = 1 

The final result indicates |𝜌| = 1, so it can be concluded 

that the method used is unconditionally stable and allows 

freedom in choosing Δt and Δx for simulations. 

3.3 Simulation and Interpretation of Results using 

Wolfram Mathematica Software 

The discretization results obtained for the KdV equation 

in Equation (3.6) serve as the initial step in determining the 

numerical solution. These discretization results are then 

subjected to simulation to verify whether the applied method 

yields an appropriate solution. The calculations performed 

during this simulation require the assistance of computer 

software to facilitate the process. The software used is 

Wolfram Mathematica 13. In this stage, we will simulate a 

one-soliton case within the interval −40 ≤ 𝑥 ≤ 40, 0 ≤ 𝑡 ≤
15  and taking ∆𝑡 = 0,05 and ∆𝑥 = 0,2 by our hypothetical 

values. The initial conditions used in this simulation are as 

follows: 

𝑢(𝑥. 0) = 3𝑉 sech(𝑥 − 5)2 (3.9) 

 

 

Figure 3.1 Numerical solution of a one-soliton case with V=1 

 

Figure 3.2 Numerical solution of soliton wave with 𝑉 = 2 

The figure 3.1 above shows the numerical solution of the 

KdV equation at 𝑡 = 15, where in equation (3.8), the value of 

𝑉 = 1  with ∆𝑡 = 0,05 and ∆𝑥 = 0,2. The graph above also 

shows the comparison between the exact solution and the 

numerical solution. Based on the graph, the numerical error in 

the 𝑡 interval, [0,15] for ∆𝑥 = 0,2  and 𝑉 = 1 is 1,60 × 10−2. 

The graph 3.2 shows the numerical solution of the KdV 

equation at 𝑡 = 15 with the values 𝑉 = 2, ∆𝑡 = 0,05, and 

∆𝑥 = 0,2, as given in equation (3.8). The graph also illustrates 

the comparison between the exact solution and the numerical 

solution. Based on the graph, the numerical error in the t 

interval [0,15]  for ∆𝑥 = 0,2 and V=2 is 8,6 × 10−2. 

By comparing the exact solution with the numerical 

solution, the maximum numerical error within the interval 

[0,15] for 𝑉 = 1  with ∆𝑡 = 0,05 and ∆𝑥 = 0,2  is 

1,60 × 10−2. Meanwhile, for ∆𝑡 = 0,06 and ∆𝑥 = 0,1, the 

maximum numerical error within the interval [0,15] is 

4,060 × 10−3.. This shows that by reducing the values of 

∆𝑡 and ∆𝑥, a smaller maximum numerical error within the 

interval [0,15] is obtained. 

4. Conclusion and Advice 

4.1. Conclusion 

Based on the discussion above, the following 

conclusions can be drawn: 

1. The numerical solution of the Korteweg-de Vries 

(KdV) equation using the finite difference method with 

the Crank-Nicolson scheme is achieved by discretizing 

the general equation of KdV. The equation is then 

linearized to obtain a linear equation from the 

discretization process. 

2. The stability analysis influences the determination of 

the values of ∆𝑡 and ∆𝑥 to be used. Based on the 

analysis, it is found that the finite difference method 

with the Crank-Nicolson scheme for the Korteweg-de 

Vries (KdV) equation is an unconditionally stable 

method, allowing for the freedom to choose values of 

∆𝑡 and ∆𝑥. 

3. Based on the comparison between the exact solution 

and the numerical solution obtained, it can be 

concluded that the larger the values of 𝑉, ∆𝑡, and ∆𝑥, 

the greater the numerical errors produced.  

4.2. Advice 

Solving the Korteweg-de Vries (KdV) equation has been 

the subject of numerous studies by various researchers. 

Therefore, it is advisable to compare each numerical solution 

for further investigation. Through these comparisons, we can 

discern the strengths and weaknesses of each method and 

determine which numerical method is the most suitable for 

solving the equation. 
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