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A B S T R A C T 

We explore a predator-prey model that incorporates both anti-predator behavior by the prey and the Allee effect, 

where populationgrowth declines at low densities. Four equilibrium points emerge: extinction for both species (𝐸0), 

two predator extinction points (𝐸1 and 𝐸2), and one coexistence point for both populations (𝐸3). While the stability 

of 𝐸0, 𝐸2, and 𝐸3 depends on the given parameters, 𝐸1 is always unstable. We then verified this analysis through 

numerical simulations using Runge-Kutta method in Python. 
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1. Introduction 

The relationship between prey and predator is one of 

the most extensively studied topics in mathematical 

modeling. The first model that described the 

interaction between prey and predator, subsequently 

referred to as the predator-prey model, was 

introduced by Lotka and Volterra and later became 

known as the Lotka-Volterra model [1]. Leslie and 

Gower assumed that the populations of prey and 

predators grow logistically and are limited by 

environmental capacity or carrying capacity [2]. The 

environmental capacity of the predator population is 

affected by the prey population, while the prey 

population is limited by a fixed environmental 

carrying capacity. Subsequently, various models have 

been modified by altering the response functions, 

including Holling types 1, 2, 3, and 4 [2, 3, 4, 5]. 

 

Besides altering its response functions, the predator-

prey model is also adapted by incorporating 

additional factors such as the Allee effect [3, 5, 9], 

and anti-predator behavior [4, 6, 8]. The Allee effect 

represents a phenomenon illustrating how the growth 

or reproduction of individuals within a population 

can be impeded or even halted when the population 

density drops below a certain threshold known as the 

Allee threshold. The emergence of the Allee effect in 

the prey population results in individuals struggling 

to find mates, making reproduction more challenging, 

consequently leading to a decline in the prey 

population. Ye et al. [3] explored a model 
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incorporating a strong Allee effect and a type 1 

response function, which is defined by: 

 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) (𝑥 − 𝐿) − 𝑎𝑥𝑦; 

 

 

(1) 
𝑑𝑦

𝑑𝑡
= 𝑐(𝑎𝑥)𝑦 − 𝑚𝑦. 

 

𝑥 and 𝑦 represent the populations of prey and 

predators, respectively. The parameter 𝑟 describes the 

intrinsic growth rate of the prey population, and 𝑐 is 

the conversion coefficient from prey to predator. The 

environmental carrying capacity is symbolized by 𝐾, 
while the Allee effect is represented by 𝐿. The 

predation rate by predators is denoted by 𝑎, and the 

predator death rate is symbolized by 𝑚. 

Gaib and Wahdania [8] investigated a predator-prey 

model with the Monod-Haldane response function 

and anti-predator behavior, as follows 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) −

𝑎𝑥𝑦

𝑥 + 𝑛𝑦2
; 

 

 

(2) 
𝑑𝑦

𝑑𝑡
=

𝑏𝑥𝑦

𝑥 + 𝑛𝑦2
− 𝑚𝑦 − 𝜂𝑥𝑦. 

 

𝑏 is the interaction coefficient between prey and 

predator influence the growth rate of predators. 𝑛 

represents the saturation level of predation, and anti-

predator behavior is symbolized by 𝜂. Anti-predator 

behavior is a mechanism that evolves as an 

adaptation in prey to enhance their survival. The 

addition of this factor allows prey to defend 

themselves against predator attacks and influences 

the dynamics of both prey and predator populations. 

2. Mathematical Model 

Based on the introduction presented above, we know 

that predator-prey interactions are not only 

influenced by the Allee effect but also anti-predator 

behavior. Therefore, we modified model (1) by 

adding anti-predator behavior, as in model (2), so that 

the model becomes: 

 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) (𝑥 − 𝐿) − 𝑎𝑥𝑦; 

 

 

(3) 
𝑑𝑦

𝑑𝑡
= 𝑐(𝑎𝑥)𝑦 − 𝑚𝑦 − 𝜂𝑥𝑦. 

 

 

 

 

 

3. Results and Discussions 

3.1. Equilibrium Points 

The equilibrium points of model (3) are obtained by 

solving the equations 
𝑑𝑥

𝑑𝑡
= 0 and 

𝑑𝑦

𝑑𝑡
= 0. There are 

four possible fixed points: 

 

1. Extinction of both species point 

𝐸0 = (0,0) 

2. Predator extinction point 

𝐸1 = (𝐿, 0) 

3. Predator extinction point 

𝐸2 = (𝐾, 0) 

4. Interior equilibrium point where both species 

coexist: 

𝐸3 = (𝑥∗, 𝑦∗) 

where 𝑥∗ =
𝑚

𝑎𝑐−𝜂
; 

𝑦∗ =
𝑟

𝑎
(1 −

𝑚

𝐾(𝑎𝑐 − 𝜂)
) (

𝑚

𝑎𝑐 − 𝜂
− 𝐿). 

𝐸3 exist when 𝑥∗ and 𝑦∗ positive. 𝑥∗ will be positive 

if 𝑎𝑐 > 𝜂 and 𝑦∗will be positive if 
𝑚

𝐾(𝑎𝑐−𝜂)
< 1 and 

𝐿 <
𝑚

𝑎𝑐−𝜂
. 

3.2. Stability Analysis of Equilibrium Points 

The stability analysis of equilibrium points is 

conducted by linearizing model (3). The Jacobian 

matrix of the model is: 

 

𝐽(𝑥, 𝑦) = [
𝑗11 −𝑎𝑥

𝑎𝑐𝑦 − 𝜂𝑦 𝑎𝑐𝑥 − 𝜂𝑥 − 𝑚
], 

where 

𝑗11 = 𝑟 (1 −
𝑥

𝐾
) (𝑥 − 𝐿) −

𝑟𝑥(𝑥 − 𝐿)

𝐾
+ 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑦. 

The stability of each equilibrium point can be 

determined by substituting each equilibrium point 

into the Jacobian matrix and finding its eigenvalues. 

1. 𝐸0 = (0,0) 

𝐽(0,0) = [
−𝑟𝐿 0

0 −𝑚
]. 

The eigenvalues are 𝜆1 = −𝑟𝐿; 𝜆2 = −𝑚. Since all 

parameters have positive values, the eigenvalues of 
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the point 𝐸0 are negative. Therefore, the point 𝐸0 is 

locally stable. 

2. 𝐸1 = (𝐿, 0) 

𝐽(𝐿, 0) = [
𝑟𝐿 (1 −

𝐿

𝐾
) −𝑎𝐿

0 𝐿𝑎𝑐 − 𝐿𝜂 − 𝑚
]. 

 

The eigenvalues are 𝜆1 =
𝑟𝐿(𝐾−𝐿)

𝐾
;  𝜆2 = 𝐿𝑎𝑐 − 𝐿𝜂 −

𝑚. 𝜆1 and 𝜆2 will be negative if 𝐿 > 𝐾 and 𝐿 <
𝑚

𝑎𝑐−𝜂
. 

Since 𝐿 represents the Allee effect and 𝐾 is the 

environmental carrying capacity, 𝐿 cannot be greater 

than 𝐾. Therefore, point 𝐸1 is always unstable. 

3. 𝐸2 = (𝐾, 0) 

𝐽(𝐾, 0) = [
−𝑟(𝐾 − 𝐿) −𝑎𝐾

0 𝐾𝑎𝑐 − 𝐾𝜂 − 𝑚
]. 

The eigenvalues are 𝜆1 = 𝑟𝐿 − 𝑟𝐾; 𝜆2 = 𝐾𝑎𝑐 −
𝐾𝜂 − 𝑚. Point 𝐸2 will be stable if both eigenvalues 

are negative, i.e., when 𝐿 < 𝐾 and 𝐾 <
𝑚

𝑎𝑐−𝜂
. 

4. 𝐸3 = (𝑥∗, 𝑦∗) 

The Jacobian matrix of 𝐸3(𝑥∗, 𝑦∗) is 

𝐽(𝑥∗, 𝑦∗)

= [𝑟 (1 −
𝑥∗

𝐾
) (𝑥∗ − 𝐿) −

𝑟𝑥∗(𝑥∗ − 𝐿)

𝐾
+ 𝑟𝑥∗ (1 −

𝑥∗

𝐾
) − 𝑎𝑦∗ −𝑎𝑥∗

𝑎𝑐𝑦∗ − 𝜂𝑦∗ 𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚
]. 

Because it is not straightforward to determine the 

eigenvalues of the equilibrium point 𝐸3, its stability 

criteria can be investigated by utilizing trace and 

determinant values. Point 𝐸3 is stable if the following 

two statements are satisfied. 

a. 𝑇𝑟(𝐽(𝐸3)) < 0 

b. 𝐷𝑒𝑡(𝐽(𝐸3)) > 0 

The first condition, the trace value of point 𝐸3 is as 

follows: 

𝑇𝑟(𝐽(𝐸3)) = 𝑟 (1 −
𝑥∗

𝐾
) (𝑥∗ − 𝐿) −

𝑟𝑥∗(𝑥∗−𝐿)

𝐾
+

𝑟𝑥∗ (1 −
𝑥∗

𝐾
) − 𝑎𝑦∗ +  𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚  

= 𝑟𝑥∗ −
𝑟𝑥∗2

𝐾
− 𝑟𝐿 +

𝑟𝐿𝑥∗

𝐾
−

𝑟𝑥∗2

𝐾
+

𝑟𝐿𝑥∗

𝐾
+ 𝑟𝑥∗ −

𝑟𝑥∗2

𝐾
−

𝑎𝑦∗ + 𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚  

= 2𝑟𝑥∗ +
2𝑟𝐿𝑥∗

𝐾
+ 𝑎𝑐𝑥∗ − (

3𝑟𝑥∗2

𝐾
+ 𝜂𝑥∗ + 𝑟𝐿 + 𝑚 + 𝑎𝑦∗)  

= (2𝑟 +
2𝑟𝐿

𝐾
+ 𝑎𝑐) 𝑥∗ − (

3𝑟𝑥∗2

𝐾
+ 𝜂𝑥∗ + 𝑎𝑦∗ + 𝑚 + 𝑟𝐿)  

The value of 𝑇𝑟(𝐽(𝐸3)) will be negative if 

(2𝑟 +
2𝑟𝐿

𝐾
+ 𝑎𝑐) 𝑥∗ <

3𝑟𝑥∗2

𝐾
+ 𝜂𝑥∗ + 𝑎𝑦∗ + 𝑟𝐿 + 𝑚.  

The second condition, the determinant of point 𝐸3 is 

as follows 

𝐷𝑒𝑡(𝐽(𝐸3)) = (𝑟 (1 −
𝑥∗

𝐾
) (𝑥∗ − 𝐿) −

𝑟𝑥∗(𝑥∗−𝐿)

𝐾
+

𝑟𝑥∗ (1 −
𝑥∗

𝐾
) − 𝑎𝑦∗) (𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚) − (−𝑎𝑥∗)(𝑎𝑐𝑦∗ −

𝜂𝑦∗)  

= ((𝑟 −
𝑟𝑥∗

𝐾
) (𝑥∗ − 𝐿) −

𝑟𝑥∗2

𝐾
+

𝑟𝐿𝑥∗

𝐾
+ 𝑟𝑥∗ −

𝑟𝑥∗2

𝐾
−

𝑎𝑦∗) (𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚) + 𝑎𝑐𝑥∗𝑦∗ − 𝑎𝜂𝑥∗𝑦∗  

= (𝑟𝑥∗ −
𝑟𝑥∗2

𝐾
− 𝑟𝐿 +

𝑟𝐿𝑥∗

𝐾
−

𝑟𝑥∗2

𝐾
+

𝑟𝐿𝑥∗

𝐾
+ 𝑟𝑥∗ −

𝑟𝑥∗2

𝐾
−

𝑎𝑦∗) (𝑎𝑐𝑥∗ − 𝜂𝑥∗ − 𝑚) + 𝑎𝑐𝑥∗𝑦∗ − 𝑎𝜂𝑥∗𝑦∗  

= (2𝑟𝑥∗ + 2𝑟𝐿𝑥∗ −
3𝑟𝑥∗2

𝐾
− 𝑟𝐿 − 𝑎𝑦∗) (𝑎𝑐𝑥∗ − 𝜂𝑥∗ −

𝑚) + 𝑎𝑐𝑥∗𝑦∗ − 𝑎𝜂𝑥∗𝑦∗  

= 2𝑎𝑐𝑟𝑥∗2 + 2𝑎𝑐𝑟𝐿𝑥∗2 −
3𝑎𝑐𝑟𝑥∗3

𝐾
− 𝑎𝑐𝑟𝐿𝑥∗ − 𝑎2𝑐𝑥∗𝑦∗ −

2𝜂𝑟𝑥∗2 − 2𝜂𝑟𝐿𝑥∗2 +
3𝜂𝑟𝑥∗3

𝐾
+ 𝜂𝑟𝐿𝑥∗ + 𝑎𝜂𝑥∗𝑦∗ −

2𝑚𝑟𝑥∗ − 2𝑚𝑟𝐿𝑥∗ +
3𝑚𝑟𝑥∗2

𝐾
+ 𝑚𝑟𝐿 + 𝑎𝑚𝑦∗ + 𝑎𝑐𝑥∗𝑦∗ −

𝑎𝜂𝑥∗𝑦∗  

= 2𝑎𝑐𝑟𝑥∗2 + 2𝑎𝑐𝑟𝐿𝑥∗2 +
3𝜂𝑟𝑥∗3

𝐾
+ 𝜂𝑟𝐿𝑥∗ + 𝑎𝜂𝑥∗𝑦∗ +

3𝑚𝑟𝑥∗2

𝐾
+ 𝑚𝑟𝐿 + 𝑎𝑚𝑦∗ + 𝑎𝑐𝑥∗𝑦∗ −

3𝑎𝑐𝑟𝑥∗3

𝐾
− 𝑎𝑐𝑟𝐿𝑥∗ −

𝑎2𝑐𝑥∗𝑦∗ − 2𝜂𝑟𝑥∗2 − 2𝜂𝑟𝐿𝑥∗2 − 2𝑚𝑟𝑥∗ − 2𝑚𝑟𝐿𝑥∗ −
𝑎𝜂𝑥∗𝑦∗  

=
3𝜂𝑟𝑥∗3

𝐾
+ (

3𝑚𝑟

𝐾
+ 2𝑎𝑐𝑟𝐿 + 2𝑎𝑐𝑟) 𝑥∗2 + 𝜂𝑟𝐿𝑥∗ +

(𝑎𝜂 + 𝑎𝑐)𝑥∗𝑦∗ + 𝑚𝑟𝐿 + 𝑎𝑚𝑦∗ − (
3𝑎𝑐𝑟

𝐾
𝑥∗3 +

2𝜂𝑟𝑥∗2(1 + 𝐿) + (𝑎𝑐𝑟𝐿 + 2𝑚𝑟𝐿 + 2𝑚𝑟)𝑥∗ +

(𝑎2𝑐 + 𝑎𝜂)𝑥∗𝑦∗). 

Let 

𝜔1 =
3𝜂𝑟𝑥∗3

𝐾
+ (

3𝑚𝑟

𝐾
+ 2𝑎𝑐𝑟𝐿 + 2𝑎𝑐𝑟) 𝑥∗2 + 𝜂𝑟𝐿𝑥∗

+ (𝑎𝜂 + 𝑎𝑐)𝑥∗𝑦∗ + 𝑚𝑟𝐿 + 𝑎𝑚𝑦∗; 

𝜔2 =
3𝑎𝑐𝑟

𝐾
𝑥∗3 + 2𝜂𝑟𝑥∗2(1 + 𝐿)

+ (𝑎𝑐𝑟𝐿 + 2𝑚𝑟𝐿 + 2𝑚𝑟)𝑥∗

+ (𝑎2𝑐 + 𝑎𝜂)𝑥∗𝑦∗. 

So that 𝐷𝑒𝑡(𝐽(𝐸3)) = 𝜔1 − 𝜔2. 𝐷𝑒𝑡(𝐽(𝐸3)) will be 

positive if 𝜔1 > 𝜔2. 

4. Numeric Simulations 
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After conducting the stability analysis of the 

predator-prey model with anti-predator behavior and 

Allee effect on prey, this section involves numeric 

simulation using various parameters to visually 

demonstrate the system's behavior. For the numeric 

simulation, the fourth-order Runge-Kutta method is 

employed, utilizing Python programming. 

4.1. Simulation 1 

The parameter values used are 𝑟 = 0.8, 𝐾 = 30, 𝐿 =
2, 𝑎 = 0.6, 𝑐 = 0.8, 𝑚 = 0.3, 𝜂 = 0.2 and the initial 

conditions are 𝑥0 = 8 and 𝑦0 = 1.5.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure. 1 –The solution moves towards point 𝑬𝟎   

Based on the simulation results using the given 

parameters and initial values, it is evident that the 

solution converges towards point 𝐸0. The prey 

population gradually increases, followed by a 

significant rise in the predator population. Over time, 

both populations decline and eventually approach the 

extinction points for both predator and prey. 

4.2. Simulation 2 

In this simulation, the parameters used are 𝑟 =
0.8, 𝐾 = 20, 𝐿 = 0.3, 𝑎 = 1, 𝑐 = 0.5, 𝑚 = 0.5, 𝜂 =
0.5. The initial values remain the same, namely 𝑥0 =
8 and 𝑦0 = 1.5. 

 

 

 

 

 

 

 

Figure. 2 – The solution moves towards point 𝑬𝟐 

With the given parameters, the system's solution 

converges towards point 𝐸2. This implies predator 

extinction, consequently causing the prey population 

to increase towards the environmental carrying 

capacity, 𝐾. 

4.3. Simulation 3 

In this simulation, the parameters used are 𝑟 =
0.3, 𝐾 = 30, 𝐿 = 0.02, 𝑎 = 0.6, 𝑐 = 0.36, 𝑚 = 0.3 

and 𝜂 = 0.2. The initial values remain the same, 

namely 𝑥0 = 8 and 𝑦0 = 1.5.  

 

 

 

 

 

 
 

Figure. 3 – The solution moves towards point 𝑬𝟑 

In this simulation, the solution moves towards the 

interior equilibrium point 𝐸3, which represents the 

coexistence point of the two species. 

 

5. Conclusion 

Analysis of model (3) reveals four equilibrium 

points, namely, 𝐸0, 𝐸1, 𝐸2, and 𝐸3. Point 𝐸0 is locally 

stable, while 𝐸1 is always unstable. Since 𝐿 

represents Allee effect and 𝐾 is the environmental 

carrying capacity, 𝐿 cannot be greater than 𝐾, making 

point 𝐸1 consistenly unstable. Point 𝐸2 will be stable 

if 𝐿 < 𝐾 and 𝐾 <
𝑚

𝑎𝑐−𝜂
, and the stability of interior 

point 𝐸3, or coexistence of the two species, depends 

on the selected parameters. From the simulation it is 

observed that suppressing the Allee effect and anti-

predator behavior fosters stability at 𝐸3, hinting that 

minimal ecological pressures favor coexistence. 
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