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A B S T R A C T 

To describe the spring stiffening effect that occurs in physics and engineering problems, Georg Duffing added the cubic 

stiffness term to the linear harmonic oscillator equation and is now known as the Duffing oscillator. Despite its simplicity, 

its dynamic behavior is very diverse. In this research, the Exponential Time Difference (ETD) method is introduced to 

solve the Duffing oscillator numerically. To formulate the ETD method, we were using the integration factors. It is a 

function which, when multiplied by an ordinary differential equation, produces a differential equation that can be 

integrated. This method is an effective numerical method for solving complex differential equations, especially equations 

that have strong non-linearity, including the Duffing oscillator. The ETD method delivers highly accurate numerical 

solutions for the Duffing oscillator, with minimal discrepancy from the analytical results. Through parameter variation, 

the ETD method's applicability extends to diverse Duffing oscillator configurations. 
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1. Introduction 

To describe the spring hardening effect that occurs in 

physics and engineering problems, Georg Duffing added a 

cubic stiffness term to the linear harmonic oscillator equation 

and it is now known as the Duffing oscillator oscillator 

(Duffing, 1918). In a classical mechanical system, this model 

can be described by a mass on a spring that has stiffness in it. 

The differential equation for this model is: 

𝑑2𝑥

𝑑𝑡2
+ 𝛿

𝑑𝑥

𝑑𝑡
+ 𝛼𝑥 + 𝛽𝑥3 = 𝛾 cos(𝜔𝑡) (1) 

where 𝑥 is the displacement and 𝛿, 𝛼, 𝛽, 𝛾, 𝜔 are constant 

parameters related to damping, stiffness, restoring force, 

driving force amplitude, and driving force angular frequency, 

respectively. 

The Duffing oscillator is used as an approximation model 

for physical systems or as a model to test various solutions of 

new methods (C. Pezeshki, 1987; Feng, 2003). The Duffing 

oscillator has been solved in various ways, such as the P-stable 

linear symmetric multistep method (Wang, 2005), Laplace 

decomposition algorithm (Yusufoğlu, 2006), and target 

function method (Chen, 2002). 

Because of its simplicity, and because so much is already 

known about the Duffing equation, it is used by many 

researchers as an approximation model of many physical 

systems or as a convenient mathematical model to investigate 

new solution methods (Johannessen, 2014; Johannessen, 

2015). 

On the other hand, the Duffing differential equation has 

also been effectively addressed in many studies. Despite the 

simplicity of the Duffing oscillator, its dynamic behavior is 
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very diverse and its research is still ongoing today. In this 

study, the Exponential Time Differencing (ETD) method is 

introduced to numerically solve the Duffing oscillator. 

2. Research Methods 

To formulate the ETD method (S.M. Cox, 2002), it is 

necessary to explain the integration factor. An integration 

factor is a function that, when multiplied by an ordinary 

differential equation, produces an integrable differential 

equation. 

For example, here is a first-order differential equation: 

𝑑𝑢(𝑡)

𝑑𝑡
− 𝑐 𝑢(𝑡) = 𝐹(𝑢, 𝑡) (2) 

where 𝐹(𝑢, 𝑡) corresponds to forcing or non-linear terms, and 

𝑐 is a constant. We start the derivation of the ETD method by 

introducing the integrating factor 𝑒−𝑐𝑡 into the derivative 

(Gregory Beylkin, 1998). 

𝑑

𝑑𝑡
[𝑒−𝑐𝑡  𝑢(𝑡)] = −𝑐 𝑒−𝑐𝑡  𝑢(𝑡) + 𝑒−𝑐𝑡

𝑑𝑢(𝑡)

𝑑𝑡
 

𝑑

𝑑𝑡
[𝑒−𝑐𝑡  𝑢(𝑡)] = 𝑒−𝑐𝑡 [−𝑐 𝑢(𝑡) +

𝑑𝑢(𝑡)

𝑑𝑡
] 

𝑑

𝑑𝑡
[𝑒−𝑐𝑡  𝑢(𝑡)] = 𝑒−𝑐𝑡  𝐹(𝑢, 𝑡) 

(3) 

If Equation (3) is integrated with time step ℎ = 𝑡𝑛+1 −

𝑡𝑛, then 

∫ 𝑑(𝑒−𝑐𝑡  𝑢(𝑡))

ℎ

0

= ∫ 𝑒−𝑐𝑡  𝐹(𝑢, 𝑡)

ℎ

0

𝑑𝑡 (4) 

where the solution of the integral form in Equation (4) is 

(Adams, 2003) 

𝑢(ℎ) = 𝑒𝑐ℎ  𝑢(0) + 𝑒𝑐ℎ ∫ 𝑒−𝑐𝑡  𝐹(𝑢, 𝑡)

ℎ

0

𝑑𝑡 (5) 

Assuming 𝑡𝑛 = 0, Equation (5) can be written as: 

𝑢(𝑡𝑛+1) = 𝑒𝑐ℎ 𝑢(𝑡𝑛) 

                    + 𝑒𝑐ℎ ∫ 𝑒−𝑐𝜏  𝐹(𝑢𝑡𝑛
, 𝑡𝑛)

ℎ

0

𝑑𝜏 
(6) 

If we write 𝑢(𝑡𝑛) = 𝑢𝑛 and 𝐹(𝑢𝑡𝑛
, 𝑡𝑛) = 𝐹𝑛, then 

𝑢𝑛+1 = 𝑢𝑛 𝑒𝑐ℎ + 𝑒𝑐ℎ ∫ 𝑒−𝑐𝜏  𝐹𝑛

ℎ

0

𝑑𝜏 

𝑢𝑛+1 = 𝑢𝑛 𝑒𝑐ℎ + 𝑒𝑐ℎ 𝐹𝑛 [−
𝑒−𝑐𝜏

𝑐
]

ℎ

0
 

𝑢𝑛+1 = 𝑢𝑛 𝑒𝑐ℎ + 𝐹𝑛 (
𝑒𝑐ℎ − 1

𝑐
) 

(7) 

Equation (7) is the ETD method to be used. 

3. Results and Discussion 

Let us consider a damped Duffing oscillator, suppose it has the 

form of: 

𝑑2𝑥

𝑑𝑡2
+

𝑑𝑥

𝑑𝑡
+ 𝑥 + 𝑥3 = 𝑐𝑜𝑠3(𝑡) − sin(𝑡) (8) 

with initial conditions are 

𝑥(0) = 1      and       𝑥′(0) = 0 (9) 

The exact solution is (Tabatabaei, 2014) 

𝑥(𝑡) = cos(𝑡) (10) 

If we write 

𝑑𝑥

𝑑𝑡
= 𝑣      dan      

𝑑2𝑥

𝑑𝑡2
=

𝑑𝑣

𝑑𝑡
 (11) 

then, Equation (8) can be arranged in such a way that it 

takes the form of 

𝑑𝑣

𝑑𝑡
+ 𝑣 = −𝑥 − 𝑥3 + 𝑐𝑜𝑠3(𝑡) − sin(𝑡) (12) 

We can see that Equation (12) is similar to Equation (2) 

if 

𝑐 = −1    and     𝐹(𝑥, 𝑡) = −𝑥 − 𝑥3 

                                                 + 𝑐𝑜𝑠3(𝑡) 

                                                 − sin(𝑡) 

(13) 

Once we have the values of 𝑐 and 𝐹(𝑥, 𝑡), we can use the 

ETD method by iterating on Equation (7). The iteration results 

can be seen in Figure 1. 

 

Figure. 1 - Comparison of the solution to Equation (8) using the ETD 

method with its analytical solution (upper) and discrepancies 

between them (lower). 
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In Figure 1, a comparison between the numerical 

solution given by the ETD method and the analytical solution 

is shown. The numerical solution given by the ETD method 

follows well the movement of the analytical solution, with 

very small discrepancies. 

The simulation results show that the ETD method can be 

used to solve the Duffing oscillator, Equation (8), numerically 

with good accuracy. It is shown from the largest error obtained 

is very small, which is 0.0001. The error obtained is calculated 

by taking the absolute value of the difference between the 

numerical solution and the analytical solution. 

For a different formulation of the Duffing oscillator than 

the one mentioned above, we can manipulate the equation in 

such a way that it will yield different values of 𝑐 and 𝐹(𝑥, 𝑡) 

in Equation (13). Therefore, by adjusting these values, we can 

use the ETD method to solve various differential forms of the 

Duffing oscillator in a relatively fast and accurate manner. 

4. Conclusion 

The ETD method has been used to numerically solve the 

Duffing oscillator model equation. It is one of the effective 

numerical methods for solving complex differential equations, 

especially those with strong non-linearity. 

The simulation results show that the solution provided by 

the ETD method and the analytical solution are highly 

accurate. The difference between the two solutions is very 

small, even for long time spans. This shows that the ETD 

method can be used to solve the Duffing oscillator model 

equation with high accuracy. 

Overall, the ETD method is an effective and efficient 

numerical method for solving the Duffing oscillator model 

equations. This method can be used for various purposes 

related to the Duffing oscillator, such as simulation, analysis, 

and design. 
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