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A B S T R A C T

West Nusa Tenggara (NTB) is one of the provinces in Indonesia with a percentage of poor people according to the March-
September period in 2019, namely 14.56% − 13.88%, while in 2020 it was 13.97% − 14.23% and in 2021 the percentage
was 14.14% − 13.83%. The factors suspected of influencing poverty in each province have different conditions each year,
so repeated observations are needed on poverty data and the factors that influence it. If the data contains multicollinearity,
then one of the classic assumptions of multiple linear regression is not met so that the problem of multicollinearity needs
to be addressed. The Principal Component Regression (PCR) method is the most consistent compared to the ridge and
least square regression methods in solving multicollinearity problems. This study aims to analyze poverty in NTB using
the PCR method. The data used in this study are the number of poor people and factors influencing poverty based on
districts in NTB in 2020− 2022. Based on the calculation results, it was obtained that Component 1 with an eigenvalue of
4.008 explained 57.2% of the variance, while Component 2 with an eigenvalue of 1.740 explained 82.1% of the variance.
Both components significantly affect poverty according to the results of simultaneous and partial tests. This model has an
𝑅2 value of 0.302 or 30.2% and the remaining 69.8% is influenced by external factors (error). The 𝑅2 value is classified
as a weak category and it is recommended to add other factors that affect poverty including access to electricity, access to
sanitation, access to clean drinking water, and government spending.
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1. Introduction

Poverty is a global problem that can be found in almost all countries in the world, both developed and
developing countries. Indonesia is one of the developing countries with a fairly high poverty rate. Based on
data released by the BPS–Statistics Indonesia in 2021, the number of poor people in Indonesia reached 26.50
million people. Even though this number decreased by 0.01 million people from the number of poor people in
2020, the number of poor people in Indonesia is still relatively high.

West Nusa Tenggara (NTB) is one of the provinces in Indonesia which has a percentage of poor people
according to the March-September period in 2019, namely 14.56%−13.88%, while in 2020 it is 13.97%−14.23%
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and in 2021 percentage of 14.14% − 13.83% (BPS, 2022). Based on the percentage of poor people since
2019 − 2021, the poverty level is still very high, so both central and regional governments need to eradicate
poverty in NTB, so it is necessary to conduct research on the factors that significantly influence poverty. Factors
thought to influence poverty include gross regional domestic product (GRDP), literacy rates, unemployment,
government spending: health and education [1]. The factors that are thought to influence poverty in each
province have different conditions each year, so repeated observations of poverty data and the factors that
influence it are needed. Furthermore, to determine the relationship pattern or influence of predictor factors on
poverty, a statistical method is needed, namely regression analysis [2].

Regression analysis is a statistical analysis used to determine the pattern of relationships between variables,
namely predictor variables (𝑋) and response variables (𝑌 ). Data analysis that can be used on response variables
is quantitative data type, namely linear regression. There are two types of linear regression, namely simple
linear regression and multiple linear regression. Simple linear regression is used to determine the relationship
or influence of a predictor variable on the response variable. Meanwhile, multiple linear regression is used to
determine the relationship or influence that more than one predictor variable has on the response variable [3].
The regression analysis used to determine the factors that significantly influence poverty uses multiple linear
regression analysis because it has more than one predictor variable. If the data contains multicollinearity, then
one of the classic assumptions of multiple linear regression is not fulfilled so the multicollinearity problem
needs to be overcome [4]. There are several methods for resolving multicollinearity, including least squares,
Principal Component Regression (PCR), ridge regression, Least Absolute Shrinkage and Selection Operator
(LASSO), and latent roots [5]. However, in applying these methods it was found that Ridge Regression and
PCR were the best methods for resolving multicollinearity because they had the smallest Average Mean Square
Error (AMSE) values compared to other methods [6].

The PCR method is a combination of Principal Component Analysis (PCA) and regression analysis. PCR
works by reducing the initial independent variables into new variables called principal components which
are mutually independent, then regressing these principal components to obtain a regression model. Ridge
regression is a modification of the least squares method that works by adding a bias constant to the main
diagonal of the variance-covariance matrix. Ridge regression and PCR both obtain analysis results that have
smaller variances [7]. Based on research conducted by [8] entitled "Comparison of Least Squares, Ridge
Regression and Principal Component Approaches in the Presence of Multicollinearity in Regression Analysis"
found that the Principal Component Regression (PCR) method was the most consistent compared to the ridge
and least square regression methods in solving multicollinearity problems. This is because all the independent
variables studied are significant to the dependent variable.

Given the many factors that influence poverty, the problem of multicollinearity often occurs when it involves
many variables. For example, research by [9] explains that there is a problem of multicollinearity in the variables
of electricity access, sanitation access, access to clean drinking water, GRDP, and government spending. The
five variables used are factors that influence the percentage of poor people in Java-Bali and West Nusa Tenggara.
Although research related to poverty has been conducted, the use of Principal Component Regression (PCR)
to identify the factors that most influence poverty in NTB is a more modern and appropriate approach. This
method not only overcomes the problem of multicollinearity, it will also provide clearer results about which
variables are most significant in explaining variations in poverty. Therefore, this study aims to analyze poverty
in NTB using the PCR method with the title "Analysis of Factors Affecting Poverty in NTB Using Principal
Component Regression".

2. Research Methods
2.1. Data Source

The data used in this research is the number of poor people and factors that influence poverty according to districts/cities
in NTB in 2020 − 2022. This data is secondary data sourced from the Central Statistics Agency (BPS) of NTB Province.
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The research data is part of the dependent variable and several independent variables. These variables are presented in
Table 1 as follows.

Table 1. Research Variable
Symbol Variable Unit
𝑌 Percentage of Poor People Percentage (%)
𝑋1 Population Density Souls/Km2

𝑋2 Human Development Index Percentage (%)
𝑋3 Open Unemployment Rate Percentage (%)
𝑋4 Expenditure Per Capita Thousand Rupiah/Person
𝑋5 GRDP Per Capita at Current Prices Rupiah/Person
𝑋6 GRDP Per Capita at Constant Prices Rupiah/Person
𝑋7 Mean Years of Schooling Year

2.2. Research Procedures
This study uses the Principal Component Regression (PCR) method. The analysis steps are as follows:

a. Determine the data description, namely the average and standard deviation of poverty data and the factors that
influence it.

b. Standardizing research data using centralization and scaling methods. Standardization is a method that transforms
research variables into the form [10]:

𝑦∗𝑖 =
𝑦𝑖 − 𝑌
𝑆𝑌

, 𝑖 = 1, 2, . . . 𝑛. (1)

𝑍𝑖 𝑗 =
𝑋𝑖 𝑗 − 𝑋 𝑗

𝑆 𝑗

, 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . 𝑘 . (2)

with

𝑆𝑌 =

√︂∑
𝑖 (𝑌𝑖 − 𝑌 )2
𝑛 − 1

and 𝑆 𝑗 =

√︄∑
𝑖 (𝑋𝑖 𝑗 − 𝑋 𝑗 )2
𝑛 − 1

Based on the variables that have been standardized, the general form of the multiple linear regression equation
model is obtained as follows [7]:

𝑦∗𝑖 = 𝑏1𝑍𝑖1 + 𝑏2𝑍𝑖2 + · · · + 𝑏𝑘𝑍𝑖𝑘 + 𝜀𝑖 , 𝑖 = 1, 2, . . . , 𝑛 (3)

c. Carry out parameter estimation using the Ordinary Least Square (OLS) method through the following equation [7]:

𝛽 = (𝑋 𝑡𝑋)−1𝑋 𝑡𝑌 (4)

where 𝛽 estimated parameter 𝛽 𝑗 using the OLS method.

d. Detecting multicollinearity, if multicollinearity is idetected then it is resolved using the PCR method. Testing is
detected through the Variance Inflation Factor (VIF) [11]:

𝑉𝐼𝐹 =
1

1 − 𝑅2
(5)

where 𝑅2 is the coefficient of determination. If the𝑉𝐼𝐹 ≥ 10, then multicollinearity occurs between the independent
variables.

e. Determine the eigenvalues (𝜆 𝑗 ) of the correlation matrix (𝜌) using the following equation [12]:

|𝜌 − 𝜆𝐼 = 0| (6)

f. Determine the principal component score (K) formed using the following equation [12]:

(𝜌 − 𝜆𝐼)𝑎 𝑗 = 0 (7)
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g. Conducting multiple linear regression of the dependent variable against the principal components. Thus, the
principal component regression model is obtained as follows [13]:

𝑌 = 𝑤0 + 𝑤1𝐾1 + 𝑤2𝐾2 + · · · + 𝑤𝑚𝐾𝑚 (8)

The selected principal components 𝐾1, 𝐾2, . . . , 𝐾𝑚 are linear combinations of the standardized variables as follows.

𝐾1 = 𝑎𝑡1𝑍 = 𝑎11𝑍1 + 𝑎12𝑍2 + · · · + 𝑎1𝑘𝑍𝑘
𝐾2 = 𝑎𝑡2𝑍 = 𝑎21𝑍1 + 𝑎22𝑍2 + · · · + 𝑎2𝑘𝑍𝑘

...

𝐾𝑚 = 𝑎𝑡𝑚𝑍 = 𝑎𝑚1𝑍1 + 𝑎𝑚2𝑍2 + · · · + 𝑎𝑚𝑘𝑍𝑘 (9)

h. Testing the significance of PCR model parameters simultaneously and partially. The explanation is as follows [7]:

• Simultaneous Test
The following is the hypothesis of the simultaneous test for the 𝐹 test.

𝐻0 : 𝛽1 = 𝛽2 = · · · = 𝛽𝑘 = 0

𝐻1 : ∃𝛽𝑖 ≠ 0, (𝑖 = 1, 2, 3, . . . , 𝑘)

Simultaneous test statistics using the 𝐹 test are as follows:

𝐹count =

𝑆𝑆𝑅

𝑘

𝑆𝑆𝐸

(𝑛 − 𝑘 − 1)

=
𝑀𝑆𝑅

𝑀𝑆𝐸
(10)

Decision-making criteria, namely if 𝐹count > 𝐹(𝛼;𝑑 𝑓 1;𝑑 𝑓 2) or 𝑝 value < 𝛼, then reject 𝐻0, which means that
the independent variable simultaneously influences the dependent variable.

• Partial Test
The following is the hypothesis of the partial test for the 𝑡 test.

𝐻0 : 𝛽 𝑗 = 0, 𝑗 = 1, 2, 3, . . . , 𝑘 ( 𝑗 parameter is not significant)
𝐻1 : 𝛽 𝑗 ≠ 0, 𝑗 = 1, 2, 3, . . . , 𝑘 ( 𝑗 parameter is significant)

Partial test statistics using the 𝑡 test are as follows:

𝑡count =
𝛽 𝑗

𝑆𝐸 (𝛽 𝑗 )
(11)

Decision-making criteria, namely if |𝑡count | > 𝑡 (𝛼;𝑑 𝑓 ) or 𝑝 value < 𝛼, then reject 𝐻0, which means that the
independent variable partially influences the dependent variable.

i. Changing the multiple linear regression equation into the standard variable form, the following model is obtained
[13]:

𝑌 = 𝑤0 + 𝑤1𝐾1 + 𝑤2𝐾2 + · · · + 𝑤𝑚𝐾𝑚 + 𝜀 (12)

j. Changing the multiple linear regression equation back into its original variable form, the following model is obtained
[13]:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + · · · + 𝛽𝑘𝑋𝑘 + 𝜀 (13)

k. Conducting classical assumption tests of multiple linear regression including normality tests, heteroscedasticity
tests, and autocorrelation tests. The explanation is as follows:
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• Normality Test
The Kolmogorov-Smirnov test hypothesis testing is as follows.

𝐻0 : Error is normally distributed (𝜇 = 0)
𝐻1 : Error is not normally distributed (𝜇 ≠ 0)
The test statistics for the Kolmogorov-Smirnov test are as follows:

𝐷 = Max|𝐹0 (𝜀𝑖) − 𝑆𝑁 (𝜀𝑖) | (14)

Decision-making criteria, namely if the value of 𝐷 ≤ 𝐷𝑡𝑎𝑏𝑙𝑒 or 𝑝 value > 𝛼 then it fails to reject 𝐻0, meaning
the error is normally distributed [14].

• Heteroscedasticity Test
The Glejser test hypothesis testing is as follows.

𝐻0 : No heteroscedasticity occurs
𝐻1 : Heteroscedasticity occurs

The test statistics for the Glejser test are as follows:

𝑡 =
𝛽 𝑗

𝑆𝐸 (𝛽 𝑗 )
(15)

Decision-making criteria, namely if the value of |𝑡count | < 𝑡 (𝛼;𝑑 𝑓 ) or 𝑝 value > 𝛼 then fail to reject 𝐻0 [14].
• Autocorrelation Test

The Durbin-Watson test hypothesis testing is as follows.

𝐻0 : 𝜌1 = 𝜌2 = · · · = 𝜌𝑛 = 0 (There is no autocorrelation)
𝐻1 : 𝜌𝑖 ≠ 0, 𝑖 = 1, 2, 3, . . . , 𝑛 (There is autocorrelation)

The Durbin Watson method test statistics are as follows:

𝑑 =

∑𝑛
𝑖=2 (𝜀𝑖 − 𝜀𝑖−1)2∑𝑛

𝑖=1 𝜀
2
𝑖

(16)

Decision making criteria, namely if 𝑑𝑈 < 𝑑 < 4 − 𝑑𝑈 then fail to reject fail to reject 𝐻0 meaning there is no
autocorrelation [11].

l. Conduct a goodness of fit test of the regression model formed from the PCR method by looking at the value of the
determination coefficient obtained. The test uses the following equation [15]:

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

(17)

where the 𝑅2 value has a range between 0 and 1. A regression model is said to be appropriate if the 𝑅2 value
approaches 1, and conversely, a regression model is increasingly inappropriate when the 𝑅2 value approaches 0.

3. Result and Discussion

3.1. Descriptive Statistics
A complete explanation of the data description is presented in Table 2 below

Table 2. Descriptive Statistics
N Minimum Maximum Mean Std. Deviation

𝑌 30 14.66 190.84 73.0823 51.82699
𝑋1 30 77 7,189 1,096.03 2,055.518
𝑋2 30 65.80 80.67 71.5473 4.16375
𝑋3 30 0.38 6.83 3.5053 1.44703
𝑋4 30 18,566 32,839 23,205.73 4,098.946
𝑋5 30 15,152 207,626 40,495.40 46,949.075
𝑋6 30 10,577 134,274 27,550.10 31,869.650
𝑋7 30 5.91 10.94 7.9360 1.46796
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Table 2 provides information regarding the amount of data for each variable, totaling 30 data, with minimum, maximum,
average and data distribution values. The standard deviation value is used as a measure of whether the data is distributed
homogeneously or not. Variables with high standard deviations are variables 𝑋1, 𝑋4, 𝑋5, and 𝑋6 indicating high data
variation, which means non-homogeneous data distribution. In contrast, variables with small standard deviations are
variables 𝑋2, 𝑋3, and 𝑋7 have data that is more centered around the mean, indicating higher stability or homogeneity in
the variables.

3.2. Data Standardization
The data used has different units, so the first step is to standardize the data. The process is carried out by transforming

the initial variables into standard variables using the average value and standard deviation. The standard variables are
symbolized 𝑌 ∗, 𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑍6, 𝑍7.

3.3. Parameter Estimation
Estimating the parameters of the standardized variables using the Ordinary Least Square (OLS) method. The results

of the parameter estimation calculations are presented in Table 3 below.

Table 3. OLS Method Parameter Estimation
Variable 𝛽 𝑗 Estimate
𝑍1 -0.189
𝑍2 2.507
𝑍3 0.203
𝑍4 -1.420
𝑍5 1.321
𝑍6 -1.412
𝑍7 -2.280

Table 3 explains the role of coefficients in the OLS method which shows the direct influence of each independent variable
on the dependent variable. The variables that have a positive influence on the 𝑌 variable are standard variables 𝑍2, 𝑍3,
and 𝑍5. While the variables that have a negative influence on 𝑌 are standard variables 𝑍1, 𝑍4, 𝑍6, and 𝑍7.

3.4. Multicollinearity Test
Multicollinearity can be detected using the correlation coefficient or VIF value. If a VIF ≥ 10 is obtained, it is free

from multicollinearity problems. The results of the VIF calculation are presented in Table 4 below.

Table 4. Multicollinearity Test Results
Variable VIF
𝑍1 4.542
𝑍2 45.233
𝑍3 3.691
𝑍4 16.095
𝑍5 331.065
𝑍6 336.343
𝑍7 19.377

Table 4 explains that the variables human development index (𝑍2), expenditure per capita (𝑍4), GRDP per capita at
current prices (𝑍5), GRDP per capita at constant prices (𝑍6), and mean years of schooling (𝑍7) have values 𝑉𝐼𝐹 > 10,
then the regression model experiences multicollinearity problems. Therefore, to overcome this problem, the Principal
Component Regression (PCR) method was used.
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3.5. Correlation Matrix
The correlation matrix shows the level of correlation or relationship between independent variables. An explanation

of the correlation matrix results can be seen as follows.

𝜌 =



1.000 0.715 0.583 0.765 −0.028 −0.028 0.320
0.715 1.000 0.723 0.783 0.323 0.321 0.819
0.583 0.723 1.000 0.785 0.471 0.482 0.463
0.765 0.783 0.785 1.000 0.379 0.378 0.336
−0.028 0.323 0.471 0.379 1.000 0.998 0.318
−0.028 0.321 0.482 0.378 0.998 1.000 0.317
0.320 0.819 0.463 0.336 0.318 0.317 1.000


The correlation formed has a weak to very strong level, where there is also a positive or negative relationship. Then to
determine the eigenvalue, you can use the correlation matrix. The results of the calculation of Equation (6) will obtain the
eigenvalue.

3.6. Determine Principal Component
Determining the number of principal components formed is to look at eigenvalues that are greater than one. Based

on the eigenvalues, the total diversity value for each component is also obtained. The eigenvalues and total diversity are
presented in Table 5 below.

Table 5. Eigenvalues and Total Diversity
Component Eigenvalues Total Diversity

𝐾1 4.008 0.572
𝐾2 1.740 0.821
𝐾3 0.834 0.940
𝐾4 0.267 0.978
𝐾5 0.137 0.997
𝐾6 0.013 0.999
𝐾7 0.001 1.000

Table 5 shows the number of principal components that can be formed. The results obtained were 2 components
that could be formed from the seven variables that had been analyzed, namely 4.008 and 1.740. The first eigenvalue
of 4.008 > 1 then becomes Component 1 and explained 57.2% of the variation. Meanwhile, the second eigenvalue is
1.740 > 1, so it becomes Component 2 and explained 82.1% of the variation. Apart from that, a visualization of the main
components formed can be seen in Figure 1 below.

Figure 1. Scree Plot Eigenvalues

The scree plot image can show the many components that are formed. The method is to look at the component values
that have eigenvalues > 1. The results in Figure 1 show two component points that have eigenvalues > 1. Therefore, it
can be interpreted that there are two main components formed.
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3.7. Determine Principal Component Scores
The principal component scores will be used to form the principal component regression equation through the

calculation of eigenvectors. The eigenvectors are obtained using Equation (7) by substituting the eigenvalues of the two
principal components. Then the results of the eigenvector calculations are displayed in Table 6 below.

Table 6. Principal Component Scores
Variable 𝐾1 𝐾2

𝑍1 0.667 -0.630
𝑍2 0.911 -0.282
𝑍3 0.874 -0.048
𝑍4 0.866 -0.231
𝑍5 0.614 0.776
𝑍6 0.616 0.777
𝑍7 0.681 -0.053

Table 6 explains that the main component scores obtained are the relationship between the standard variable 𝑍 𝑗 and the
principal components. This relationship can be written into the following equation.

𝐾1 = 0.667𝑍1 + 0.911𝑍2 + 0.874𝑍3 + 0.866𝑍4 + 0.614𝑍5 + 0.616𝑍6 + 0.681𝑍7 (18)
𝐾2 = −0.630𝑍1 − 0.282𝑍2 − 0.048𝑍3 − 0.231𝑍4 + 0.776𝑍5 + 0.777𝑍6 − 0.053𝑍7 (19)

3.8. Regressing Principal Component
After obtaining the main component scores, the new variables 𝐾1 and 𝐾2 will be used for regression analysis to obtain

the parameter estimates in Table 7 below.

Table 7. Parameter Estimation

Model Unstandardized Coefficients
B Std. Error

Constant −6.600𝑒−16 0.158
𝐾1 -0.331 0.161
𝐾2 -0.439 0.161

Based on the parameter estimation results, the Principal Component Regression (PCR) model is obtained as follows:

𝑌 = −6.600𝑒−16 − 0.331𝐾1 − 0.439𝐾2 (20)

3.9. Parameter Significance Test
The parameter significance test results consist of two tests, namely simultaneous and partial tests.

a. Simultaneous Test
The simultaneous test uses the F test with the following hypothesis:

𝐻0 : 𝛽1 = 𝛽2 = · · · = 𝛽𝑘 = 0

𝐻1 : ∃𝛽𝑖 ≠ 0, (𝑖 = 1, 2, 3, . . . , 𝑘)

The results of simultaneous test calculations are presented in Table ?? below.

Table 8. Simultaneous Test Results
df Fcount p value

Regression 2 5.852 0.008
Residual 27

Total 29
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Table 8 shows that the F(0.05;2;27) value is 3.354 with 𝛼 = 5%. Comparing the value of 𝐹count > 𝐹(0.05;2;27), namely
5.852 > 3.354, the decision is to reject 𝐻0. Therefore, the conclusion shows that simultaneously the independent
variables have a significant influence on the dependent variable.

b. Partial Test
The partial test uses the t test with the following hypothesis:

𝐻0 : 𝛽 𝑗 = 0, 𝑗 = 1, 2, · · · , 𝑘 ( 𝑗 parameter is not significant)
𝐻1 : 𝛽 𝑗 ≠ 0, 𝑗 = 1, 2, . . . , 𝑘 ( 𝑗 parameter is significant)

The results of the partial test calculations are presented in Table 9 below.

Table 9. Partial Test Results
Variable tcount |tcount| p value VIF
Constant 0.000 0.000 1.000
𝐾1 -2.062 2.062 0.049 1.000
𝐾2 -2.730 2.730 0.011 1.000

Table 9 shows a 𝑡 (0.05;27) value of 2.052 with 𝛼 = 5%. Comparison of the values of |𝑡count | > 𝑡 (0.05;27) , namely
2.062 > 2.052 and 2.730 > 2.052, then the decision is to reject 𝐻0. Therefore, the conclusion shows that partially
the independent variable has a significant influence on the dependent variable. Apart from that, the VIF value is
also displayed where there is no multicollinearity so that the PCR method can eliminate multicollinearity between
independent variables by producing principal components that are independent of each other.

3.10. Regression Equation in Standard Variables
Returns the principal component regression model to an equation containing the following standard variables:

𝑌 = −6.600𝑒−16 + 0.0558𝑍1 − 0.1777𝑍2 − 0.2682𝑍3 − 0.1852𝑍4 − 0.5439𝑍5 − 0.5450𝑍6 − 0.2022𝑍7 (21)

Equation (21) is used in the initial stage of PCR, where regression is performed on the principal components (𝑍𝑖).
Furthermore, the standard variables 𝑍𝑖 are returned to the initial variables 𝑋𝑖 using a linear combination to make them
easier to interpret as in equation (22).

3.11. Regression Equation in Initial Variables
Returning the equation into the initial variable, namely 𝑋𝑖 , as follows:

𝑌 = −6.600𝑒−16 + 2.7146𝑋1 − 0.0425𝑋2 − 0.1853𝑋3 − 4.5182𝑋4 − 1.1585𝑋5 − 1.7101𝑋6 − 0.1377𝑋7 (22)

Equation (22) explains that the population density variable (𝑋1) increases the amount of poverty in West Nusa Tenggara.
Therefore, emphasis is needed to reduce the amount of poverty in West Nusa Tenggara. While other variables can reduce
the amount of poverty in West Nusa Tenggara, it is necessary to increase the variables human development index (𝑋2),
open unemployment rate (𝑋3), expenditure per capita (𝑋4), GRDP per capita at current prices (𝑋5), GRDP per capita at
constant prices (𝑋6), and average years of schooling (𝑋7).
3.12. Classical Assumption Test

The results of testing errors through several classic assumption tests are as follows.

a. Normality Test
Normality testing uses the Kolmogorov Smirnov test with the following hypothesis:

𝐻0 : Error is normally distributed (𝜇 = 0)
𝐻1 : Error is not normally distributed (𝜇 ≠ 0)

The results of the normality test are shown in Table 10 below.
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Table 10. Normality Test Results
Test Statistical Value p value

0.138 0.153

Table 10 shows a value of 𝐷table = 0.242 with 𝛼 = 0.05. If the value of 𝐷 < 𝐷table is compared, namely
0.138 < 0.242, then the decision fails to reject 𝐻0. Apart from that, the p-value shows a result of 0.153 > 0.05, so
the decision fails to reject 𝐻0. Thus, the conclusion is that the error is normally distributed.

b. Heteroscedasticity Test
Heteroscedasticity testing uses the Glejser test with the following hypothesis:

𝐻0 : No heteroscedasticity occurs
𝐻1 : Heteroscedasticity occurs

The results of the heteroscedasticity test are shown in Table 11 below.

Table 11. Heteroscedasticity Test Results
Variable tcount p value
𝐾1 0.324 0.749
𝐾2 -1.241 0.225

Table 11 shows the value 𝑡 (0.05;27) = 2.052 with 𝛼 = 0.05. Comparing the value of 𝑡count < 𝑡 (0.05;27) , namely
0.324 < 2.052 and −1.241 < 2.052, then the decision fails to reject 𝐻0. Apart from that, the p value of 0.749
and 0.225 indicates that if it is greater than 0.05, the decision fails to reject 𝐻0. Thus, the conclusion is that
heteroscedasticity does not occur or the error variance of the method used is consistent.

c. Autocorrelation Test
Autocorrelation testing uses the Durbin-Watson test with the following hypothesis:

𝐻0 : 𝜌1 = 𝜌2 = · · · = 𝜌𝑛 = 0 (There is no autocorrelation)
𝐻1 : 𝜌𝑖 ≠ 0, 𝑖 = 1, 2, 3, . . . , 𝑛 (There is autocorrelation)

The results of the autocorrelation test are shown in Table 12 below.

Table 12. Autocorrelation Test Results

d Value Durbin Watson Table Values
dL dU

1.690 0.748 1.814

Table 12 explains that the Durbin-Watson test from the principal component regression method obtained a value
𝑑𝑈 < 𝑑 < 4−𝑑𝑈 , namely 0.748 < 1.690 < 2.186 so that the decision failed to reject 𝐻0, which gave the conclusion
that there was no autocorrelation.

3.13. Goodness of Fit Test

Test the goodness of the regression model by looking at the coefficient of determination (𝑅2) which is shown in Table
13 below.

Table 13. Model Goodness Results
𝑅 𝑅2 𝑅2

adj 𝑆𝑆𝐸

0.550 0.302 0.251 0.86560713
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Table 13 explains the 𝑅2 value of 0.302 or 30.2% and the remaining 69.8% is external factors (error). The Adjusted R
Square (𝑅2

adj) value of 0.251 indicates that the variation in the independent variable is able to explain the variation in the
dependent variable by 25.1%, while the remaining 74.9% explains other factors that were not studied. Std. The Error
of the Estimate (SEE) is 0.86560713, where the smaller the SEE value, the more accurate the regression model makes
predictions.

According to [16], the 𝑅2 value is categorized as weak if it is more than 0.19 but lower than 0.33. This study obtained
the 𝑅2 value using PCR on poverty data in NTB which is categorized as weak, meaning that the independent variable is
not dominant in influencing the dependent variable. So, there are other variables that contribute to the dependent variable.
Like the research conducted by [9] explains that the factors that influence the percentage of poor people in Java-Bali
and NTB are access to electricity, access to sanitation, access to clean drinking water, GRDP, and government spending.
Therefore, new variables can be added besides GRDP in further research.

4. Conclusions
Based on the results of the analysis conducted, several conclusions were obtained as follows:

a. Two main components were formed from the 7 initial variables representing the diversity of data, namely Component
1 with an eigenvalue of 4.008 explaining 57.2% of the variance, while Component 2 with an eigenvalue of 1.740
explaining 82.1% of the variance. These two components significantly influence poverty according to the results of
simultaneous and partial tests.

b. Regression model using PCR on poverty data in NTB

𝑌 = −6.600𝑒−16 + 2.7146𝑋1 − 0.0425𝑋2 − 0.1853𝑋3 − 4.5182𝑋4 − 1.1585𝑋5 − 1.7101𝑋6 − 0.1377𝑋7

c. The accuracy of the model obtained an 𝑅2 value of 0.302 or 30.2% and the remaining 69.8% was influenced by
external factors (error). The 𝑅2 value is classified as a weak category and it is recommended to add other factors that
affect poverty including access to electricity, access to sanitation, access to clean drinking water, and government
spending.
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