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A B S T R A C T 

Diabetes mellitus is a metabolic disorder characterized by elevated blood glucose levels, known as hyperglycemia. The 

objective of this study is to develop a mathematical model of diabetes mellitus. The model will be analyzed in terms of its 

equilibrium points using the Adam-Bashforth Moulton numerical method. The numerical method that used is a multistep 

method. The predictor step employs the Runge-Kutta method, while the corrector step uses the Adam-Bashforth Moulton 

method. The mathematical model of diabetes mellitus is categorized into two classes: uncomplicated diabetes mellitus and 

complicated diabetes mellitus. The resulting model identifies two equilibrium points: the endemic equilibrium point 

(complicated) and the disease-free equilibrium point (uncomplicated). The eigenvalues of these equilibrium points are 

positive real numbers and negative real numbers. Therefore, the stability of the system is found to be unstable and 

asymptotically stable, indicating that the population of individuals with uncomplicated diabetes mellitus will continue to 

rise, whereas the population with complications will not increase significantly over time. 
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1. Introduction 

Diabetes, technically called diabetes mellitus, is reffered 

to types of disorders in the metabolic processes of the human 

body in which controlling mechanism of sugar level in blood 

is disrupted (Shabestari et al, 2018). In addition, diabetes 

mellitus also is a glucose metabolism disease characterized by 

chronic hyperglycemia resulting from defects in insulin 

secretion, insulin action, or both (Gao, et al, 2017). In another 

definition, diabetes mellitus is a disease related to metabolism 

which is characterized by increased blood glucose levels or 

hyperglycemia (Poznyak et al, 2020). If not treated properly, 

it can cause various complications that affect a person's 

survival (Kaya et al., 2021). In order to make the explanation 

of diabetes mellitus easier to understand, it can be transformed 

into a model, specifically a mathematical model. 

Mathematical models are part of mathematics that are 

often used in solving problems in life. Mathematical models 

are used to describe an event in the form of a mathematical 

equation and are analyzed to obtain a solution to the problem 

that occurs (Ndii, 2018). Differential equations are one of the 

mathematical models often used to solve modeling problems 

in various fields, including in the medical field. The solution 

to the problem can be solved analytically and numerically. 

One method for obtaining a solution to a mathematical model 

numerically is the Runge Kutta Method (Wijayanti et all., 

2017). 

Mathematical models in medicine are often used to 

model the spread of a disease. Diabetes mellitus is one of the 

diseases that can be modeled in the form of a mathematical 

model (Irwan, 2019). The implementation of mathematical 

modeling tools is an emerging trend (Barbolosi et al, 2016). 

The prevalence of diabetes mellitus has been steadily 

increasing both globally and in Indonesia. As one of the most 

common chronic diseases, diabetes poses a significant public 

health challenge (Ekawati, 2021). The rise in cases is 

attributed to various factors, including lifestyle changes, 

urbanization, and an aging population. In Indonesia, the 

growing number of individuals affected by diabetes is 

particularly concerning, as it not only impacts the health of the 

population but also places a substantial burden on the 
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healthcare system (Mukhtar et al, 2020). This increasing trend 

underscores the urgent need for effective prevention, 

management, and treatment strategies to combat diabetes 

mellitus on a national and global scale. 

The number of people with diabetes mellitus in the world 

has increased from year to year. Based on data from the 

International Diabetes Federation (IDF), in 2021, the number 

of adults living with diabetes worldwide is estimated to reach 

537 million people. This figure is expected to increase to 642 

million by 2040. To predict the increase in the population of 

people with diabetes, a mathematical model can be used. The 

clinical and epidemiological characteristics of diabetes 

mellitus and the quality of its therapy are the key prognostic 

dominant the determines the organizational aspects of the 

diabetic service (Dedov, et al., 2023). 

A model is an abstraction that reduces a problem to its 

essential characteristics.Mathematical models are useful 

because they exemplify the mathematical core of situation 

without extraneous information (Akinsola and Oluyo, 2019). 

Mathematical models and numerical methods have been 

utilized as theoritical tools for years study fundamental 

elements of a wide range of healthcare (AlShubarji et al, 

2023). 

Therefore, in this study, a mathematical model for 

diabetes mellitus will be formed which is divided into two 

classes, namely diabetes mellitus without complications and 

diabetes mellitus with complications. The purpose of this 

study is to create a mathematical model of diabetes mellitus. 

Then the model will be analyzed based on its equilibrium 

point. Furthermore, it will be simulated using data that has 

been obtained using numerical methods. Based on this 

description, the author will study the mathematical model of 

diabetes mellitus disease and find its simulation by using 

Adam-Bashfort Moulton method. 

2. Research Method 

This study uses literature study and applied research. 

According to Irina (2017), applied mathematics is a research 

that has practical reasons, a desire to know, aims to be able to 

do something much better, more effective and efficient. In this 

study, a stability analysis will be carried out on the population 

of diabetes mellitus sufferers in a mathematical model. 

In this research, a mathematical modeling approach is 

employed to analyze the dynamics of diabetes mellitus. The 

study utilizes a combination of analytical and numerical 

methods to investigate the behavior of the model under 

various conditions. Specifically, the Adam-Bashforth 

Moulton multistep method is applied for numerical 

simulations, with the Runge-Kutta method used in the 

predictor phase and the Adam-Bashforth Moulton method 

employed in the corrector phase. This approach allows for a 

detailed examination of the stability of equilibrium points and 

the long-term behavior of the system, providing insights into 

the progression of diabetes mellitus and the potential impact 

of different factors on the disease's trajectory. 

Data sources are part of the supporting factors of a study. 

The data used in this study are secondary data, namely data 

from patients with diabetes mellitus. The data source was 

obtained from Mataram District Hospital, West Nusa 

Tenggara, Indonesia. 

The research plan as follows: 

 

Figure. 1 Flowchart of research 

• Formulating a real model means the characteristics of the 

problem related to diabetes mellitus. 

• Making assumptions for the model based on 

observations. 

• Formulating a mathematical problem (model). 

• Simplifying the mathematical model with an appropriate 

method. 

• Determining the equilibrium point (fixed). 

• Linearization using the Jacobian matrix at a fixed point. 

• Determining the eigenvalue (λ). 

• Conducting numerical simulations to provide an 

overview based on the solutions obtained. 

• Validating the mathematical model that has been 

obtained. 

3. Constructing the Mathematical Model 

Some facts is obtained related to diabetes mellitus are  

Diabetes mellitus is a metabolic disorder that is genetically 

and clinically heterogeneous with manifestations in the form 
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of loss of carbohydrate tolerance, if it has fully developed 

clinically then diabetes mellitus is characterized by fasting and 

postprandial hyperglycemia, atherosclerosis and 

microangiopathic vascular disease. Furthermore, if diabetes 

mellitus is not treated properly it will cause complications that 

are fatal, one of which is death. Diabetes complications can be 

prevented, delayed or slowed down by controlling blood sugar 

levels. By carrying out therapy and administering drugs, blood 

sugar levels can be controlled so that the survival of diabetes 

mellitus sufferers is longer. 

Based on the facts obtained, in this study, assumptions 

will be made so that the model formed can be limited and 

clarified. The assumptions made in forming the model are as 

follows: 

• The population of sufferers is considered constant. 

• Natural deaths occur in each population class. 

• The number of new cases of diabetes sufferers 

(Incidence) is included in the population class of diabetes 

sufferers without complications. 

• Temporary healing occurs due to controlling blood sugar 

levels. 

• Total healing occurs from complications to no 

complications. 

• Death occurs due to complications. 

Based on the assumptions that have been made, the 

variables in the mathematical model in this study are the 

number of people with diabetes mellitus without 

complications (𝐴), the number of people with diabetes 

mellitus with complications (B), and the total number of 

people with diabetes mellitus (N). The mathematical model of 

the diabetes mellitus population at time t can be described in 

the following Figure 2: 

 

 

 

 

 

 

 

Figure. 2 Compartment diagram of population model for Diabetes 

Mellitus sufferer 

According to the Figure 2, the mathematical model for 

Diabetes Mellitus sufferer can genarate to be 

𝑑𝐴

𝑑𝑡
= 𝐼𝑎 + 𝛾𝐵 − 𝜆𝐴 − 𝜇𝐴 − 𝛼𝐴 

𝑑𝐴

𝑑𝑡
= 𝐼𝑎 − (𝜆 + 𝜇 + 𝛼)𝐴 + 𝛾𝐵 

(1) 

 

𝑑𝐵

𝑑𝑡
= 𝜆𝐴 − 𝛾𝐵 − 𝜇𝐵 − 𝛿𝐵 

(2) 

𝑑𝐵

𝑑𝑡
= 𝜆𝐴 − (𝛾 + 𝜇 + 𝛿)𝐵 

In Equation 1 presents the rate of change of the 

population of people with diabetes mellitus without 

complications over time( 
𝑑𝐴

𝑑𝑡
)  increases due to the presence of 

individuals diagnosed with diabetes mellitus 𝐼𝑎 and the 

recovery of individuals from complications to no 

complications (𝛾𝐵). Then decreases due to the presence of 

individuals experiencing complications (𝜆𝐴), natural deaths 

(𝜇𝐴), and individuals categorized as temporarily cured (𝛼𝐴). 

In Equation 2 presents the rate of change of the 

population of diabetes mellitus sufferers with complications 

over time (
𝑑𝐵

𝑑𝑡
)   increases due to the presence of individuals 

experiencing complications (𝜆𝐴). Then decreases due to 

natural deaths (𝜇𝐵), deaths due to complications (𝛿𝐵), and 

individuals who recover from complications (γC). 

Furthermore, the total population of diabetes mellitus 

sufferers is 𝑁 = 𝐴 + 𝐵. 

Based on the mathematical model Equation 1 and 

Equation 2, it can be seen that 𝑁 = 𝐴 + 𝐵, so 𝑁 − 𝐵 = 𝐴  is 

obtained. It is assumed that 𝜎 = 𝜆 + 𝜇 + 𝛼 and 𝜃 = 𝛾 + 𝜇 + 𝛿 

to make it easier to analyze the model, so that the differential 

equation system of Equation 1 and Equation 2 can be rewritten 

as follows: 

a) 
𝑑𝐴

𝑑𝑡
= 𝐼𝑎 − (𝜆 + 𝜇 + 𝑔)𝐴 + 𝛾𝐵 

𝑑𝐴

𝑑𝑡
= 𝐼𝑎 − 𝜎𝐴 + 𝛾𝐵     (3) 

b) 
𝑑𝐵

𝑑𝑡
= 𝜆𝐴 − (𝛾 + 𝜇 + 𝛿)𝐵 

𝑑𝐵

𝑑𝑡
= 𝜆(𝑁 − 𝐵) − 𝜃𝐵  

𝑑𝐵

𝑑𝑡
= 𝜆𝑁 − 𝜆𝐵 − 𝜃𝐵  

𝑑𝐵

𝑑𝑡
= 𝜆𝑁 − (𝜆 + 𝜃)𝐵     (4) 

c) 
𝑑𝑁

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
+

𝑑𝐵

𝑑𝑡
 

𝑑𝑁

𝑑𝑡
= (𝐼𝑎 − (𝜆 + 𝜇 + 𝑔)𝐴 + 𝛾𝐵) + (𝜆𝐴 − (𝛾 + 𝜇 +

𝛿)𝐵)  

𝑑𝑁

𝑑𝑡
= 𝐼𝑎 − (𝜆 + 𝜇 + 𝑔)𝐴 + 𝛾𝐵 + 𝜆𝐴 − (𝛾 + 𝜇 + 𝛿)𝐵  

𝑑𝑁

𝑑𝑡
= 𝐼𝑎 − 𝜆𝐴 − 𝜇𝐴 − 𝛼𝐴 + 𝛾𝐵 + 𝜆𝐴 − 𝛾𝐵 − 𝜇𝐵 − 𝛿𝐵  

𝑑𝑁

𝑑𝑡
= 𝐼𝑎 − 𝜇𝐴 − 𝛼𝐴 − 𝜇𝐵 − 𝛿𝐵  

𝑑𝑁

𝑑𝑡
= 𝐼𝑎 − (𝐴 + 𝐵)𝜇 − 𝛼𝐴 − 𝛿𝐵  

𝑑𝑁

𝑑𝑡
= 𝐼𝑎 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵   (5) 

If 𝛽 is the controlling coefficient used to define 𝜆, then 

the assumed proportion of increasing diabetes mellitus 

complications is as follows: 

𝑁 𝐴 𝐵 

𝐼𝑎  

𝛼𝐴 

𝜆𝐴 

𝛾𝐵 

𝜇𝐴 

 

𝛿𝐵 

𝜇𝐵 
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𝜆 = 𝛽
𝐶

𝑁
 (6) 

By substituting Equation 6 into Equation 4, we will obtain a 

new differential Equation 4 as follows: 

𝑑𝐵

𝑑𝑡
= (𝛽 − 𝜃)𝐵 − 𝛽

𝐵2

𝑁
. 

Then, the population model of diabetes mellitus sufferers can 

be written as system as follows: 

𝑑𝐴

𝑑𝑡
= 𝐼𝑑 − 𝜎𝐴 + 𝛾𝐵 

𝑑𝐵

𝑑𝑡
= (𝛽 − 𝜃)𝐵 − 𝛽

𝐵2

𝑁
 

𝑑𝑁

𝑑𝑡
= 𝐼𝑑 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 

(7) 

where  

𝐼𝑎: incidence of diabetes mellitus 

𝜆 : proportion of diabetes mellitus sufferers increasing to the 

level of complications 

𝜇 : natural death rate 

𝛼 : blood glucose level 

𝛾 : complication recovery rate 

𝛿 : death rate of sufferers due to complications 

and 𝐼𝑑 , 𝜆, 𝜇, 𝛼, 𝛾, 𝛿 ≥ 0. 

4. Results 
4.1. Equilibrium Point 

The equilibrium point is obtained by setting the right-

hand side of the system of Equations 7 to zero (
𝑑𝐴

𝑑𝑡
= 0,

𝑑𝐵

𝑑𝑡
=

0,
𝑑𝑁

𝑑𝑡
= 0). This results in the system of equations 8 as 

follows: 

𝐼𝑎 − 𝜎𝐴 + 𝛾𝐵 = 0 

(𝛽 − 𝜃)𝐵 − 𝛽
𝐵2

𝑁
= 0 

𝐼𝑎 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 = 0 

(8) 

 

Based on   (𝛽 − 𝜃)𝐵 − 𝛽
𝐵2

𝑁
= 0, we have �̂� = 0 or 𝐵 =

(𝛽−𝜃)𝑁

𝛽
, then there is two equilibrium points of its condition. 

a) Equilibrium point (𝑇1) 

Determining the equilibrium point is done by assuming 

𝐵 = 0, which means there is no population experiencing 

complications. Then, the value 𝐵 = 0 is substituted into 𝐼𝑎 −
𝜎𝐴 + 𝛾𝐵 = 0, the results is 

𝐼𝑎 − 𝜎𝐴 + 𝛾𝐵 = 0 

𝐼𝑎 − 𝜎𝐴 + 𝛾(0) = 0 

𝜎𝐴 = 𝐼𝑎 

Next, substitute 𝐵 = 0 and �̂� =
𝐼𝑎

𝜎
 into 𝐼𝑎 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 =

0 , then obtained  

𝐼𝑑 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 = 0 

𝜇𝑁 = 𝐼𝑎 − 𝛼 (
𝐼𝑎
𝜎

) − 𝛿(0) 

𝜇𝑁 = 𝐼𝑎 −
𝛼𝐼𝑎
𝜎

 

𝜇𝑁 =
𝐼𝑎𝜎 − 𝛼𝐼𝑎

𝜎
 

𝜇𝑁 =
𝐼𝑎(𝜎 − 𝛼)

𝜎
 

�̂� =
𝐼𝑎(𝜎 − 𝛼)

𝜎𝜇
 

Therefore, we are obtained the first equilibrium point as 

follows: 

𝑇1 = (�̂�, �̂�, �̂�) = (
𝐼𝑎

𝜎
 , 0,

𝐼𝑎(𝜎−𝛼)

𝜎𝜇
). 

b) Equilibrium point (𝑇2) 

The equilibrium point is determined by assuming 𝐵 =
(𝛽−𝜃)𝑁

𝛽
, which means there is a population experiencing 

complications. Then, the value 𝐵 =
(𝛽−𝜃)𝑁

𝛽
 is substituted 

into 𝐼𝑎 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 = 0, resulting in: 

𝐼𝑎 − 𝜎𝐴 + 𝛾𝐵 = 0  

𝐼𝑎 − 𝜎𝐴 + 𝛾 (
(𝛽 − 𝜃)𝑁

𝛽
) = 0  

𝐼𝑎 − 𝜎𝐴 + 𝛾 (
(𝛽 − 𝜃)𝑁

𝛽
) = 0 

𝐼𝑎 − 𝜎𝐴 +
𝛾(𝛽 − 𝜃)𝑁

𝛽
= 0 

𝐼𝑎 − 𝜎𝐴 +
𝛾𝛽𝑁 − 𝛾𝜃𝑁

𝛽
= 0 

𝜎𝐴 = 𝐼𝑎 +
𝛾𝛽𝑁 − 𝛾𝜃𝑁

𝛽
 

𝜎𝛽𝐴 = 𝛽𝐼𝑎 + 𝛾𝛽𝑁 − 𝛾𝜃𝑁 

𝐴 =
𝛽𝐼𝑎 + 𝛾𝛽𝑁 − 𝛾𝜃𝑁

𝜎𝛽
. 

Substitute 𝐵 =
(𝛽−𝜃)𝑁

𝛽
 and 𝐴 =

𝛽𝐼𝑎+𝛾𝛽𝑁−𝛾𝜃𝑁

𝜎𝛽
 into 𝐼𝑎 −

𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 = 0, the we have 𝐼𝑎 − 𝜇𝑁 − 𝛼𝐴 − 𝛿𝐵 = 0 

𝐼𝑎 − 𝜇𝑁 − 𝛼 (
𝛽𝐼𝑎+𝛾𝛽𝑁−𝛾𝜃𝑁

𝜎𝛽
)  −

𝛿 (
(𝛽−𝜃)𝑁

𝛽
) = 0  
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𝜎𝛽𝐼𝑎 − 𝜎𝛽𝜇𝑁 − 𝛼(𝛽𝐼𝑎 + 𝛾𝛽𝑁 − 𝛾𝜃𝑁) 

− 𝜎𝛿(𝛽𝑁 − 𝜃𝑁) = 0 

𝜎𝛽𝐼𝑎 − 𝜎𝛽𝜇𝑁 − 𝛼𝛽𝐼𝑎 − 𝛼𝛾𝛽𝑁 + 𝛼𝛾𝜃𝑁 

− 𝜎𝛿𝛽𝑁 + 𝜎𝛿𝜃𝑁 = 0 

𝜎𝛽𝐼𝑑 − 𝛼𝛽𝐼𝑑 − 𝑁(𝜎𝛽𝜇 + 𝛼𝛾𝛽 − 𝛼𝛾𝜃

+ 𝜎𝛿𝛽 − 𝜎𝛿𝜃) = 0 

𝑁(𝜎𝛽𝜇 + 𝛼𝛾𝛽 − 𝛼𝛾𝜃 + 𝜎𝛿𝛽 − 𝜎𝛿𝜃) =

𝜎𝛽𝐼𝑑 − 𝛼𝛽𝐼𝑑   

�̂� =
𝜎𝛽𝐼𝑑 − 𝛼𝛽𝐼𝑑

𝜎𝛽𝜇 + 𝛼𝛾𝛽 − 𝛼𝛾𝜃 + 𝜎𝛿𝛽 − 𝜎𝛿𝜃
 

�̂� =
𝛽𝐼𝑑(𝜎−𝛼)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
.  

By substitute �̂� =
𝛽𝐼𝑑(𝜎−𝛼)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
 into 𝐶 =

(𝛽−𝜃)𝑁

𝛽
 is 

obtained  

�̂� =
𝛽𝐼𝑎+𝛾𝛽(

𝛽𝐼𝑑(𝜎−𝛼)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
)−𝛾𝜃(

𝛽𝐼𝑑(𝜎−𝛼)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
)

𝜎𝛽
  

�̂� =
𝐼𝑎(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))+𝛾𝐼𝑑(𝛽−𝜃)(𝜎−𝛼)

𝜎(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))
  

 Therefore, we are obtained the second equilibrium point 𝑇2 =

(�̂�, �̂�, �̂�) as follows 

�̂� =
𝐼𝑎(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))+𝛾𝐼𝑎(𝛽−𝜃)(𝜎−𝛼)

𝜎(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))
  

�̂� =
𝐼𝑎(𝛽−𝜃)(𝜎−𝛼)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
  

�̂� =
𝛽𝐼𝑎(𝜎 − 𝛼)

𝜎𝛽𝜇 + 𝛼𝛾(𝛽 − 𝜃) + 𝜎𝛿(𝛽 − 𝜃)
. 

4.2. Eigen value of system 

Before obtaining the eigenvalues, the process of 

linearization must be performed. The linearization process is 

carried out to determine the stability of the model's 

equilibrium points. Linearization of the system of equations is 

done using the Jacobian matrix (𝐽). The form of the Jacobian 

matrix based on system 7 is as follows: 

𝐽 =

[
 
 
 
 
 
 
 
 𝜕 (

𝜕𝐷
𝜕𝑡

)

𝜕𝐷

𝜕 (
𝜕𝐷
𝜕𝑡

)

𝜕𝐶

𝜕 (
𝜕𝐷
𝜕𝑡

)

𝜕𝑁

𝜕 (
𝜕𝐶
𝜕𝑡

)

𝜕𝐷

𝜕 (
𝜕𝐶
𝜕𝑡

)

𝜕𝐶

𝜕 (
𝜕𝐶
𝜕𝑡

)

𝜕𝑁

𝜕 (
𝜕𝑁
𝜕𝑡

)

𝜕𝐷

𝜕 (
𝜕𝑁
𝜕𝑡

)

𝜕𝐶

𝜕 (
𝜕𝑁
𝜕𝑡

)

𝜕𝑁 ]
 
 
 
 
 
 
 
 

 

𝐽 = [

−𝜎 𝛾 0

0 (𝛽 − 𝜃) − 2𝛽
𝐵

𝑁
𝛽

𝐵2

𝑁2

−𝛼 −𝛿 −𝜇

] 

The stability of the linearized system can be examined 

through the eigenvalues of the Jacobian matrix that has been 

obtained. There are two equilibrium points as follows:  

• The equilibrium point 𝑇1 = (�̂�, �̂�, �̂�) = (
𝐼𝑎

𝜎
 , 0,

𝐼𝑎(𝜎−𝛼)

𝜎𝜇
) is 

substituted into the Jacobian matrix 𝐽 and is obtained: 

𝐽1 = [

−𝜎 𝛾 0

0 (𝛽 − 𝜃) 0
−𝛼 −𝛿 −𝜇

] 

Next, based on 𝐽1, the characteristic equation can be 

obtained by 𝑑𝑒𝑡(𝜆𝐼 − 𝐽1) = 0, where 𝐼 is identity matrix. 

𝑑𝑒𝑡(𝜆𝐼 − 𝐽1) = 0 

𝑑𝑒𝑡 (𝜆 [
1 0 0
0 1 0
0 0 1

] − [

−𝜎 𝛾 0

0 (𝛽 − 𝜃) 0
−𝛼 −𝛿 −𝜇

]) = 0 

(𝜆 + 𝜇)((𝜆 + 𝜎)(𝜆 − 𝛽 + 𝜃) − 0) = 0 

(𝜆 + 𝜇)(𝜆 + 𝜎)(𝜆 − 𝛽 + 𝜃) = 0. 

Thus, the eigenvalues obtained 𝜆1 = −𝜇 , 𝜆2 =
−𝜎 , 𝑑𝑎𝑛 𝜆3 = 𝛽 − 𝜃. Since 𝛽 − 𝜃 > 0, the resulting 

eigenvalues include both positive and negative real numbers. 

This indicates that the system of equations 7 around the 

equilibrium point 𝑇1 is unstable. 

• The equilibrium point 𝑇2 = (�̂�, �̂�, �̂�) is substituted into 

Jacobian matrix, then we are obtained: 

𝑇2 = (�̂�, �̂�, �̂�) 

𝐽2 =

[
 
 
 
 
−𝜎 𝛾 0

0 −(𝛽 − 𝜃)
(𝛽 − 𝜃)2

𝛽
−𝛼 −𝛿 −𝜇 ]

 
 
 
 

. 

Based on 𝐽2, the characteristic equation can be obtained 

by 𝑑𝑒𝑡(𝜆𝐼 − 𝐽2) = 0, where 𝐼 is identity matrix. 

𝑑𝑒𝑡(𝜆𝐼 − 𝐽2) = 0 

𝑑𝑒𝑡 (𝜆 [
1 0 0
0 1 0
0 0 1

] − [

−𝜎 𝛾 0

0 −(𝛽 − 𝜃)
(𝛽 − 𝜃)2

𝛽

−𝛼 −𝛿 −𝜇

]) = 0 

  ||

𝜆 + 𝜎 −𝛾 0

0 λ + (𝛽 − 𝜃) −

(𝛽 − 𝜃)2

𝛽

𝛼 𝛿 λ + 𝜇

|| = 0 

Recall that 𝜃 = 𝛾 + 𝜇 + 𝛿, as different values of 𝛾 will 

be used. The eigenvalues will be obtained after substituting 

the parameter values into d 𝑑𝑒𝑡(𝜆𝐼 − 𝐽2). The resulting 

eigenvalues will be 𝜆1,  𝜆2 and 𝜆3. Based on the eigenvalues, 

the possible scenarios are: 
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• If 𝜆1,  𝜆2 and 𝜆3 are negative real numbers, this indicates that 

the system of equations 7 around the equilibrium point 𝑇2  is 

asymptotically stable. 

• If 𝜆1,  𝜆2 and 𝜆3 include both positive and negative real 

numbers, this indicates that the system of equations 7 around 

the equilibrium point 𝑇2 is unstable. 

4.3 Numerical Simulation 

The simulation model is provided to give an overview 

and validation of the developed model. The simulation uses 

data from diabetes mellitus patients in 2016 at the Mataram 

General Hospital. It is assumed that 𝐼𝑎 = 1280. According to 

data from the hospital, the total number of diabetes mellitus 

patients is 1280, with 1000 patients suffering from 

complications and 280 patients without complications. 

Therefore, the simulation is conducted by assigning values to 

each parameter. 

Table 1 – Parameter Value. 

Parameter The Value of 𝒚𝒓−𝟏 

𝜇 0.03 

𝛿 0.06 

𝛼 0.05 

𝛾 0.09 or 0 

𝛽 1 

𝜆 0.90 

4.4 The Condition When Patients Recover from 

Complications 

The simulation of the diabetic population model under 

this condition uses parameter values from Table 1. In this part, 

the recovery rate from complications (𝛾) is 0.09, resulting in 

θ = 0.16. Substituting these values into the system of equations 

7, we obtain the following: 

𝑑𝐴

𝑑𝑡
= 𝐼𝑎 − 0,91𝐴 + 0,08𝐵 

                  
𝑑𝐵

𝑑𝑡
= 0,85𝐵 −

𝐵2

𝑁
    

𝑑𝑁

𝑑𝑡
= 1170 − 0,02𝑁 − 0,05𝐵 − 0,04𝐴.  

The stability of the system of equations 9 can be analyzed 

through the eigenvalues of its Jacobian matrix. At the 

equilibrium point 𝑇1(1285,71, 0, 55928,57), the eigenvalues 

are 𝜆1 = −0,02 , 𝜆2 = −0,91, and 𝜆3 = 0,85. It can be 

observed that the eigenvalues consist of both positive and 

negative real numbers, indicating that the system of equations 

9 around the equilibrium point 𝑇1 is unstable. 

Next, the stability of the system of equations 9 around 

the equilibrium point 𝑇2(2562,04, 14518,2, 17080,3) will be 

investigated. At the equilibrium point  𝑇2, the eigenvalues are 

 𝜆1 = −0,698313 , 𝜆2 = −0,931029 , and  𝜆3 =
−0,777914 Since all the eigenvalues are negative real 

numbers, it can be concluded that the system of equations 9 

around the equilibrium point 𝑇2 is asymptotically stable. 

The stability of the system of equations 9 can also be 

analyzed based on its phase portrait as follows: 

 

Figure. 2 – Phase portrait of the population of Diabetes Mellitus 

patients recovering from complications 

 

Using the Adam-Bashfort Moulton method as a corrector 

for simulation, we need Runge-Kutta method as predictor for 

its simulation first (Suryanto, 2017). The rate of change in the 

population of diabetes mellitus patients can be determined, as 

shown in the following graph: 

 

 

 

Figure. 3 – Graph of the rate of change in the total population of 

Diabetes Mellitus patients without complications 

 

Based on Figure 3, it can be observed that the population 

of diabetes mellitus patients without complications is steadily 

increasing. The rate of change in the population of diabetes 

mellitus patients over time, under the condition where some 

patients recover from complications, shows a continuous 

increase over time (years). The fundamental difference 

between the two graphs is that the number of patients in the 

condition where no individuals recover from complications is 

lower than in the condition where individuals do recover from 

complications. 
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Figure. 4 –  Graph of the rate of change in the total population of 

Diabetes Mellitus patients with complications 

 

Based on Figure 4, it can be observed that the population 

of diabetes mellitus patients with complications is also 

steadily increasing. However, unlike the rate of the population 

of diabetes mellitus (DM) patients without complications, 

these two graphs illustrate that the number of DM patients 

with complications is higher in the condition where no patients 

recover compared to the condition where some patients do 

recover from complications. This is due to the transition of 

patients from having complications to being without 

complications. Therefore, it can be said that the survival rate 

of DM patients depends on the number of individuals who 

recover. The likelihood of death due to DM can be minimized 

by providing various treatments to ensure that DM patients 

who experience complications can be cured of them. 

4.5 The Condition When Patients Do Not Complications 

The simulation of the diabetic population model under 

this condition uses the parameter values from Table 1. In this 

scenario, the recovery rate from complications (𝛾) is 0, 

resulting in 𝜃 = 0,07. Substituting these values into the 

system of equations 7 yields the following: 

𝑑𝐴

𝑑𝑡
= 𝐼𝑎 − 0,91𝐴 + 0𝐵 

𝑑𝐵

𝑑𝑡
= 0,93𝐵 −

𝐵2

𝑁
(5.7) 

𝑑𝑁

𝑑𝑡
= 1170 − 0,02𝑁 − 0,05𝐵

− 0,04𝐴 

 

The equilibrium point is 𝑇1(1285,71,0,55928,57) and 

the stability of the system of equations 10 can be analyzed 

through the eigenvalues of its Jacobian matrix. At the 

equilibrium point  𝑇1(1285,71 , 0  , 55928,57), the 

eigenvalues are 𝜆1 = −0,02 , 𝜆2 = −0,91, and 𝜆3 = 0,93. 

Since the eigenvalues consist of both positive and negative 

real numbers, the system of equations 10 around the 

equilibrium point 𝑇1is unstable. 

Next, the stability of the system of equations 10 will be 

investigated around the equilibrium point 

𝑇2(2596,48, 14909,9, 16032,2). At the equilibrium point 𝑇2, 

𝑇2. Since all the eigenvalues are negative real numbers, the 

system of equations 10 around the equilibrium point 𝑇2is 

asymptotically stable. 

The stability of the system of equations 10 can also be 

analyzed based on its phase portrait as follows: 

 

 

Figure. 5 – Phase portrait of the population of Diabetes Mellitus with 

complications 

 

Using the Adam-Bashfort Moulton method, the rate of 

change in the population of diabetes mellitus patients can be 

determined. The rate of change in the population of diabetes 

mellitus patients over time, under the condition that no 

patients recover from complications, shows an increasing 

trend each year.  

 

 

Figure. 6 – Graph of the rate of change in the population of Diabetes 

Mellitus patients without complications 

 

Based on Figure 6, it can be observed that the population 

of diabetes mellitus patients without complications is steadily 

increasing. 
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Figure. 7 – Graph of the rate of change in the total population of 

Diabetes Mellitus patients with complications 

Based on Figure 7, it can be observed that the population 

of diabetes mellitus patients without complications is steadily 

increasing. 

Based on the stability values of both conditions, it can be 

determined that the value of γ does not affect the stability of 

the system. However, an increase in the value of γ can reduce 

the population of diabetes mellitus patients with 

complications. 

5. Discussions 

In this study, to achieve the stated objectives, data related 

to diabetes mellitus (DM) with and without complications 

were first collected. The collected data were then used to 

establish assumptions that would be utilized to formulate a 

mathematical model, resulting in the model for DM patients 

as shown in Equation 1.  

The first model in Equation 1 shows that the rate of 

population growth in DM patients is influenced by the 

incidence of DM, meaning the number of individuals 

diagnosed with DM is assumed to be constant. The presence 

of individuals who recover from complications also influences 

this growth, in addition to the natural death rate, the proportion 

of DM progressing to complications, and the rate at which 

individuals successfully normalize their blood sugar levels, all 

of which can reduce the growth rate of DM patients without 

complications. 

The second model in Equation 1 indicates that the 

population without complications is influenced by the 

proportion of individuals who develop complications. The 

more individuals who experience complications, the greater 

the population of DM patients with complications will grow, 

indicating that the death rate of individuals will also increase 

over time. 

The resulting model is a set of differential equations, 

which are then solved by forming a new model. In the system 

of Equations 2, it can be seen that a new model is formed, 

where this system creates a nonlinear system of equations. The 

equilibrium points and their stability analysis are then 

determined from this model. 

The analysis results yield two equilibrium points: the 

endemic (complications) equilibrium and the disease-free 

(without complications) equilibrium. The disease-free 

equilibrium points are given successively as (�̂�, �̂�, �̂�) =

(
𝐼𝑎

𝜎
, 0,

𝐼𝑎(𝜎−𝛼)

𝜎𝜇
), �̂� →

𝐼𝑎

𝜎
 means that as time progresses, the 

total population will approach the equilibrium point 𝐴.�̂� →
0means that as time progresses, the number of individuals 

entering class 𝐵 will diminish. �̂� →   
𝐼𝑎(𝜎−𝛼)

𝜎𝜇
 means that as 

time progresses, the total population will approach the 

equilibrium point 𝑁. The endemic (complications) 

equilibrium points are successively given as (�̂�, �̂�, �̂�) =

(

  
 

𝐼𝑑(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))+𝛾𝐼𝑑(𝛽−𝜃)(𝜎−𝛿)

𝜎(𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃))
,

 
𝐼𝑑(𝛽−𝜃)(𝜎−𝛿)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
,

𝛽𝐼𝑑(𝜎−𝛿)

𝜎𝛽𝜇+𝛼𝛾(𝛽−𝜃)+𝜎𝛿(𝛽−𝜃)
 )

  
 

 

 

The stability analysis of the linearized system can be 

examined through the eigenvalues of the Jacobian matrix that 

was obtained. From the previous analysis, the eigenvalues of 

the first equilibrium point (𝑇1) are found to be distinct real 

numbers, one positive and one negative, indicating that the 

stability of the system is unstable, meaning the population of 

DM patients will continually increase. Meanwhile, the 

eigenvalues of the second equilibrium point (𝑇2) are found to 

be negative real numbers, indicating that the stability of the 

system is asymptotically stable, meaning the population of 

DM patients will not increase significantly over time. 

 

Acknowledgements 

Thank you very much to Department of mathematics, Faculty 

of Mathematics and Natural Sciences, University of Mataram. 

 

REFERENCES 

 

Akinsola, V. O., & Oluyo, T. O. (2019). Mathematical 

analysis with numerical solutions of the mathematical 

model for the complications and control of diabetes 

mellitus. Journal of Statistics and Management 

systems, 22(5), 845-869. 

AlShurbaji, M., Kader, L. A., Hannan, H., Mortula, M., & 

Husseini, G. A. (2023). Comprehensive study of a 

diabetes mellitus mathematical model using numerical 

methods with stability and parametric 

analysis. International Journal of Environmental 

Research and Public Health, 20(2), 939. 

Dedov, I. I., Shestakova, M. V., Vikulova, O. K., 

Zheleznyakova, A. V., Isakov, M. A., Sazonova, D. V., & 

Mokrysheva, N. G. (2023). Diabetes mellitus in the 

Russian Federation: dynamics of epidemiological 

indicators according to the Federal Register of Diabetes 

Mellitus for the period 2010–2022. Diabetes 

mellitus, 26(2), 104-123. 

0.0 0.2 0.4 0.6 0.8 1.0

1000

1050

1100

1150

1200

1250

1300

Waktu

C
t



SALWA, ET AL   | 129 

 

Ekawati, D. (2021). Model Matematika pada Penyakit 

Diabetes Melitus dengan Faktor Genetik dan Faktor 

Sosial. Journal of Mathematics: Theory and Applications, 

23-30. 

Gao, Y., Wang, Y., Zhai, X., He, Y., Chen, R., Zhou, J., ... & 

Wang, Q. (2017). Publication trends of research on 

diabetes mellitus and T cells (1997–2016): A 20-year 

bibliometric study. PloS one, 12(9), e0184869. 

Irina, F., 2017,  Metode Penelitian Terapan, Parama Ilmu, 

Yogyakarta. 

Irwan, I. (2019). Model Matematika Penyakti Diabetes 

Melitus. Jurnal Varian, 2(2), 68-72.  

Kaya, K., Darmawati, dan Ekawati, D., 2021, Model 

Matematika pada Penyakit Diabetes Melitus dengan 

Faktor Genetik dan Faktor Sosial, JOMTA Journal of 

Mathematics: Theory and Applications, 3 (1): 2722-2705. 

Mukhtar, Y., Galalain, A., & Yunusa, U. (2020). A modern 

overview on diabetes mellitus: a chronic endocrine 

disorder. European Journal of Biology, 5(2), 1-14. 

Suryanto, A. (2017). Metode numerik untuk persamaan 

diferensial biasa dan aplikasinya dengan 

MATLAB. Universitas Negeri Malang. 

Shabestari, P. S., Rajagopal, K., Safarbali, B., Jafari, S., & 

Duraisamy, P. (2018). A novel approach to numerical 

modeling of metabolic system: Investigation of chaotic 

behavior in diabetes mellitus. Complexity, 2018(1), 

6815190. 

Poznyak, A., Grechko, A. V., Poggio, P., Myasoedova, V. A., 

Alfieri, V., & Orekhov, A. N. (2020). The diabetes 

mellitus–atherosclerosis connection: The role of lipid and 

glucose metabolism and chronic 

inflammation. International journal of molecular 

sciences, 21(5), 1835. 

.

 


