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ABSTRACT

Audio signals play an important role as a medium for storing information, such as lecture materials, inter-
view results, and other archives. However, audio signals are often contaminated by noise, which is unwanted
interference that can affect their quality. Therefore, a denoising process is needed to reduce or eliminate noise
components in the signal. This research aims to enhance audio signal quality using the Fast Fourier Transform
(FFT) and Least Mean Square (LMS) algorithms, which are known for their simplicity and ease of implementa-
tion. This research uses primary data, specifically audio signals recorded under two noise conditions: rain noise
as Audio Signal 1 and guitar instrument noise as Audio Signal 2, both stored in WAV format. The denoising
process was performed using MATLAB software and evaluated based on the signal-to-noise ratio (SNR) and
mean squared error (MSE) metrics. Higher SNR values and lower MSE values indicate the success of the
denoising process in improving audio signal quality. The results of this study demonstrate the effectiveness of
the applied algorithms, where the SNR value reached 38.2596 dB with an MSE of 0.0000028211 for Audio Signal
1, and an SNR value of 38.6881 dB with an MSE of 0.0000014988 for Audio Signal 2. An SNR value between
25 dB and 40 dB is categorized as a very good signal, indicating that the quality of the processed audio signals
falls into the very good signal category.
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1. Introduction

The existence of signals in today’s digital era is crucial, playing a central role in facilitating
connectivity, communication, and access to information. Signals have the capacity to transmit desired
data or information from one location to another quickly [1]. In the context of communication, audio
signals are the most commonly used, closely related to how audio information (sound) is recorded,
processed, and delivered back to listeners in digital format [2|. However, audio signals often face
challenges, such as contamination by noise. Noise is an unwanted signal that can affect the quality of
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the original signal, leading to disruptions in processes like speech recognition, especially in conversation
recordings [3|. To enhance the quality of audio signals, such as recordings, it is important to perform
denoising effectively and efficiently.

Denoising is a process aimed at reducing or eliminating noise components by filtering audio signals
to improve their quality, enabling the conveyed information to be identified and understood clearly
[4]. In this context, the Fast Fourier Transform (FFT) and Least Mean Square (LMS) algorithms are
often utilized in the denoising process due to their simple structure and ease of implementation in
software. FFT is an algorithm used to transform audio signals from the time domain to the frequency
domain. Representing signals in the frequency domain allows for analyzing their frequency spectrum,
identifying both desired signal components and unwanted noise [5|. Meanwhile, LMS is an algorithm
used to adaptively adjust filters to reduce noise or produce an optimal estimation of the desired audio
signal [6].

Several studies have discussed denoising processes using FFT and LMS algorithms. For instance,
research by |7| implemented the FFT algorithm to develop a simulation system for reducing noise
levels in fan motor sounds. Similarly, research by [6] employed the LMS algorithm to minimize noise
in gunshot sound signals. Both algorithms aim to achieve the same goal, reducing noise in audio signals.
The use of FFT and LMS in the denoising process is supported by a strong theoretical foundation
and has been validated through various previous studies. Both have relatively simple structures and
are easy to implement in software. The FFT transforms the signal to the frequency domain for easy
noise identification, while the LMS filters out the noise by adaptively adjusting the filter coefficients,
resulting in a cleaner and more optimized signal estimation.

Previous research has proven the effectiveness of FF'T and LMS separately in noise reduction. This
research combines both algorithms in one complementary framework. The difference lies in the use
of one homogeneous audio signal source, which is the author’s voice recording containing noise. The
FFT is used to analyze the frequency spectrum and identify noise, which then becomes input for the
LMS in adjusting the adaptive filter to produce a more optimal signal.

2. Research Methods

This research implements the FFT and LMS algorithms to perform denoising on recorded audio
signals. The process begins with data collection through the author’s voice recording using a mobile
phone. There are two data used, the first data is 1.90 MB in the form of audio signals with rain
noise, and the second data is 1.93 MB in the form of audio signals with guitar instrument noise. Both
recordings are about +10 seconds long and contain the greeting “Assalamu’alaikum Warrahmatullahi
Wabarakatuh." The data is stored in WAV format to maintain the original audio quality without
compression and facilitate signal processing. Implementation stages include:

a) Data Preprocessing

This stage is performed to prepare the audio signals before the denoising process using the FFT
and LMS algorithms, including the following steps:

e Data Normalization

Data normalization is performed to standardize the amplitude scale of the signal so that
it falls within the range of -1 and 1. The goal is to stabilize the amplitude and prevent
distortion or unwanted deviations caused by extreme amplitude scale differences, which can
make the sound appear as a constant buzzing noise. Normalization is calculated using the
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Max Abs Scaler method. The equation used is as follows [8]:

X
. =—- 1
Xscaled [max(x)| ( )
Where,
X : the original value.
max(x)| : the absolute value of the attribute.

e Zero-Padding

Zero-padding is used to optimize the performance of the Fast Fourier Transform (FFT) by
adding zeros to the data so that the signal reaches a certain length. This process is carried
out to extend the number of samples in the signal to a power of 2", because the structure
of the FFT algorithm is designed to optimally divide and combine signals whose lengths
are powers of two. The calculation of zero-padding involves the base-2 logarithm, as shown

below:
N’ = 9flogz(N)] (2)

Where 2M1°82(M)1 s the smallest power of two greater than N, to get the recommended
padding length [9].
e Windowing

Windowing is used to minimize the side effects of cutting the signal in the Fast Fourier
Transform (FFT). The windowing process involves multiplying the signal by a window
function to produce smoother transitions at the edges of the signal (the start and end).
A commonly used windowing technique is the Hamming window, as it generates smoother
transitions. The equation for the Hamming window is as follows [10]:

2nn
=0.54 - 0.46 3
w(n) COS(N—l) (3)
Where,
w(n) : the value of the Hamming window at index n
N : the total number in the window
n : the index that varies from 0 to N — 1

b) Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is a numerical algorithm used to compute the Discrete
Fourier Transform (DFT) quickly and efficiently by reducing the time complexity from O(N?)
to O(NlogN) |11, 12|. The DFT represents a discrete signal in the time domain as a frequency
domain signal.

The FFT equation is derived by decomposing the DFT into smaller components by dividing the
total number of samples N into even and odd components, as follows:

N1
2 27 (2n)m j27(2n+l)m

X(m) = Z [x(2n)e_j2 " +x(2n+1)e_j2 X (4)
n=0

Where,
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x(2n) : the signal value at even indices.

x(2n+1) : the signal value at odd indices, with n being a positive integer.
j27(2n+1l)m .

e TN : the complex factor representing the phase for each sample.

This stage converts the audio signal from the time domain to the frequency domain with the
goal of identifying noise [12].

Inverse Fast Fourier Transform (IFFT)

The Inverse Fast Fourier Transform (IFFT) is used to convert a signal processed by the FFT
from the frequency domain back to the time domain. The equation for the continuous IFFT is
given by [5]:

w0 = [ x(periay (5)
Where,
x(1) : the continuous signal in the time domain.
x(f) : the frequency spectrum of the signal x(t).

e/27ft . the complex exponential function with frequency f and time variable 7.

This stage is performed to reconstruct the audio signal from the frequency domain back to the
time domain, aiming to preserve the frequency information [11].

Least Mean Square (LMS)

The Least Mean Square (LMS) algorithm is an iterative method used to optimize filter coeffi-
cients, such as the learning rate and filter order (signal length), to minimize the error between
the generated output signal and the desired target signal [4]. The general form of the LMS
algorithm for updating the adaptive filter coefficients is given by [13]:

Wost = Wi + pe(n)x" (n) (6)
where,

W, : the filter coeflicient vector at the n-th iteration.

Wue1 @ the updated filter coeflicient vector at the (n + 1)-th iteration.

J7i : the learning rate.

This stage is used to optimize the adaptive filter in order to minimize the error [4].

Signal To Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) is an indicator used to measure the quality of a signal affected by
noise [14]. The SNR value represents the ratio between the power of the signal and the power
of the noise, and is mathematically expressed as |15]:

P igna.
SNR = 10log (M) (7)

Noise

where,

Psignal @ power of the signal.
Pnoise @ power of the noise.
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The SNR value indicates the level of signal quality compared to the level of noise [16].
This stage is used to measure the quality of the audio signal affected by noise. In this research,
the SNR is considered optimal when SNR > 25dB [17].

f) Mean Square Error (MSE)

Mean Squared Error (MSE) is an indicator used to evaluate the minimum error value that can
be achieved by a noise removal system [14|. MSE is calculated as the average of the squared dif-
ferences between the predicted values and the actual values [18|. The mathematical formulation

is given as:
1y
MSE = > =yi)? (8)
i=0
where,

N : number of signal data points,
x; @ actual value,
y; predicted value.

A lower MSE value, approaching zero, indicates more accurate predictions that closely match
the actual values [19].

This stage is used to evaluate the minimum error achieved by the noise removal system. In this
research, the MSE is considered minimum when the value is below the defined error tolerance
threshold of 0.00001 [20].

3. Result and Discussion
3.1. Input Sinyal Audio

The first step is to read the audio signal from the wav file and represent it in the time domain.
Below is the plot of the audio signal contaminated by noise:

Audio Signal 1 - Rain Noise
-+ T

Amplitude

Time (seconds)

Figure 1. Audio Signal 1 in the Time Domain
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Audio Signal 2 - Guitar Instrument Noise
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Figure 2. Audio Signal 2 in the Time Domain

Based on Figure 1 and 2, the horizontal axis represents time (seconds), and the vertical axis
represents amplitude. Each point represents the signal’s amplitude at a specific time. The amplitude
pattern shows random variations, indicating the presence of noise and reflecting the sound intensity

over time.
3.2. Data Normalization
The following is a representation of the normalized data sample presented in the form of a his-

togram.

Audio Signal 1 - Rain Noise
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Figure 3. Normalized Data Histogram of Audio Signal 1
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Audio Signal 2 - Guitar Instrument Noise
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Figure 4. Normalized Data Histogram of Audio Signal 2

Each histogram has a relatively symmetrical distribution shape with a peak around the value of
0. This indicates that most of the amplitude data ranges close to zero. This is typical of a normal
distribution, where data tends to be concentrated around the mean (in this case, zero) with a decrease
in frequency in both directions as the amplitude value moves away from zero.
3.8. Zero-Padding

Zero-padding is calculated using the base 2 logarithm. The lengths of audio signals 1 and 2 of
499200 and 506880 respectively are enlarged to 524288, which is the nearest power of two of both signal
lengths. This step optimizes the FFT algorithm by reducing the time complexity. The following is
the calculation of time complexity by FFT:

FFT =O(NlogN)
FFT = 0(524288 1log 524288)
FFT = 0(9961472)

This calculation shows that the time complexity of the FFT is much smaller than the DFT for the
same signal size, 9961472 < 249600640000.

3.4. Windowing

The following is a representation of the hamming window value on audio signal 1 and audio signal
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Hamming Window - Audio Signal 1
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Figure 5. Hamming Window Audio Signal 1
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Figure 6. Hamming Window Audio Signal 2

The application of hamming window changes the amplitude scale, especially at the ends of the
signal (where the signal is cut off). The signal amplitude becomes smaller at the edges and closer to
its original value in the middle. This shows how hamming window is used to reduce the effects of
frequency spectrum leakage when performing signal analysis in the frequency domain by Fast Fourier
Transform (FFT).

3.5. The Fast Fourier Transform Process

The Fast Fourier Transform (FFT) in the denoising process is used to convert a signal from the
time domain to the frequency domain to identify signal and noise components. This process involves
thresholding, which separates the signal and noise components by setting a threshold based on the
signal amplitude in the frequency domain, as shown in the following plot:
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Figure 7. Thresholding on Audio Signal 1
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Figure 8. Thresholding on Audio Signal 2

3.6. The Inverse Fast Fourier Transform Process

The Inverse Fast Fourier Transform (IFFT) is used to convert the signal from the frequency
domain back to the time domain because signals in the time domain are the form that can be utilized,
interpreted, and applied in real-life scenarios. The following is a plot of the signal after applying IFFT.
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Figure 9. Audio Signal 1 before and after the FFT Process
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Figure 10. Audio Signal 2 before and after the FFT Process

Figure 9 and 10 shows significant changes in the audio signal after filtering with FFT. The decrease
in signal amplitude indicates that the filter effectively reduced noise.

3.7. The Least Mean Square Process

The use of the Least Mean Square (LMS) algorithm, which operates in the time domain, optimizes
filter coefficients such as the learning rate and filter order to minimize the error between the generated
output signal and the desired target signal. Below is the plot of the denoising results performed by
the Least Mean Square (LMS) algorithm.
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Figure 11. Denoising Results Display on Audio Signal 1
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Figure 12. Denoising Results Display on Audio Signal 2

There are three subplots showing the filtering results using the LMS algorithm. The first subplot
depicts the audio signal contaminated with noise, showing random amplitude variations. The second
subplot displays the error signal, which is the difference between the input signal after the FFT process
and the filter output at each iteration. The decrease in the error signal amplitude indicates that the
LMS filter is effective in reducing noise. The third plot shows the output signal after denoising, which
appears cleaner and more stable, indicating the success of the LMS filter.

3.8. Signal To Noise Ratio (SNR)
SNR is a parameter used to measure the quality of a signal affected by noise. The higher the SNR

value, the greater the success of the denoising process. Below is the table of the output SNR values
obtained.

Table 1. Output SNR Value of Audio Signal 1
SNR After Denoising (dB)

Order 16 Order 32 Order 128

Learning Rate SNR Before Denoising (dB)

0.001 4.345 17.9677 18.2905 19.3479
0.005 4.345 23.5995 24.1944 25.8284
0.01 4.345 26.3791 26.9824 28.4583
0.05 4.345 33.0720 33.5454 34.6160
0.1 4.345 35.8634 36.3616 37.2911
0.12 4.345 36.5898 37.1071 37.9691
0.13 4.345 36.9079 37.4350 38.2596
0.14 4.345 37.2020 37.7388 3.7942

0.15 4.345 37.4756 38.0218 0.000000021
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Table 2. Output SNR Value of Audio Signal 2
SNR After Denoising (dB)
Order 16 Order 32 Order 128

Learning Rate SNR Before Denoising (dB)

0.001 6.6953 16.1019 16.4033 17.1599
0.005 6.6953 21.8014 22.3999 23.7629
0.01 6.6953 24.3167 24.9675 26.4627
0.05 6.6953 30.9689 31.5323 32.5773
0.1 6.6953 33.8280 34.3586 35.2659
0.12 6.6953 34.5736 35.0994 35.9669
0.13 6.6953 34.9003 35.4246 36.2720
0.14 6.6953 35.2024 35.7256 36.5525
0.15 6.6953 35.4834 36.0059 36.8116
0.27 6.6953 37.8660 38.3922 38.6881
0.28 6.6953 38.0127 38.5397 7.2912
0.29 6.6953 38.1540 38.6819 0.00043

Tables 1 and 2 show that increasing the Learning Rate (u) generally improves the SNR value;
however, a value of u that is too large can lead to instability. This is evident from the decrease in
SNR observed in each audio signal, with Audio Signal 1 dropping from 38.2596 dB to 3.7942 dB, and
Audio Signal 2 dropping from 38.6881 dB to 7.2912 dB. Furthermore, a higher filter order also tends
to improve the SNR, but it must be adjusted with p to avoid instability. In this case, selecting the
correct learning rate and filter order is crucial to achieving the best results. For Audio Signal 1, the
SNR reaches its optimal value when y = 0.13 and filter order = 128, achieving 38.2596 dB compared
to the pre-denoising SNR of 4.345 dB, which shows a significant improvement. Similarly, for Audio
Signal 2, the SNR reaches its optimal value when u = 0.27 and filter order = 128, achieving 38.6881
dB compared to the pre-denoising SNR of 6.6953 dB, which also shows a significant improvement.

3.9. Mean Square Error (MSE)

MSE is a parameter used to evaluate the minimum MSE value achieved by the noise removal
system. The closer the value is to the minimum, the more accurate the prediction. Below are the
minimum output MSE values.

Table 3. Output MSE Value of Audio Signal 1

Learning Rate MSE

Order 16 Order 32 Order 128

0.001 0.0002900 0.0002696 0.0002127
0.005 0.0000815  0.0000712 0.0000490

0.01 0.0000432  0.0000376 0.0000268

0.05 0.0000093  0.0000083 0.0000065

0.1 0.0000048  0.0000043 0.0000035

0.12 0.0000041  0.0000036 0.0000030

0.13 0.0000338  0.0000340 0.0000028

0.14 0.0000035  0.0000317 0.0135380

0.15 0.0000011  0.0000297 394153033
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Table 4. Output MSE Value of Audio Signal 2

Learning Rate MSE

Order 16 Order 32 Order 128

0.001 0.0002551  0.0002386 0.0002030
0.005 0.0000720  0.0000628 0.0000460
0.01 0.0000406  0.0000350 0.0000248
0.05 0.0000088  0.0000077 0.0000061
0.1 0.0000045  0.0000040 0.0000032
0.12 0.0000038  0.0000034 0.0000028
0.13 0.0000035  0.0000031 0.0000026
0.14 0.0000033  0.0000029 0.0000024
0.15 0.0000031  0.0000027 0.0000023
0.27 0.0000028  0.0000260 0.0000014
0.28 0.0000027  0.0000025 0.0025414
0.29 0.0000036  0.0000035 112329980

For each filter order, the MSE value tends to decrease as u increases, indicating that an increase
in u accelerates the reduction of error. However, if y increases too much, it can lead to instability or
divergence. For Audio Signal 1, the MSE sharply increases from 0.0000028 to 0.0135380 and 394153033
as u changes from 0.13 to 0.14 and 0.15 with a filter order of 128. A similar trend occurs in Audio
Signal 2, where the MSE rises from 0.0000014 to 0.0025414 and 112329980 as u changes from 0.27 to
0.28 and 0.29 with a filter order of 128. The minimum MSE value is achieved when it is below the
error tolerance of 0.00001, which is 0.0000028 for Audio Signal 1 and 0.0000014 for Audio Signal 2.

4. Conclusions

The implementation of the Fast Fourier Transform (FFT) and Least Mean Square (LMS) algo-
rithms aims to reduce noise in audio signals. FFT is used to identify the noise, while LMS is used to
optimize the filter to minimize the noise. This combination significantly reduces noise, as seen in the
generated graphs, which show a decrease in amplitude intensity and smaller fluctuations compared to
the pre-filtered signal. The quality of the resulting audio signal is categorized as "very good signal"
based on the SNR and MSE values. For Audio Signal 1, the SNR reaches 38.2596 dB with an MSE
of 0.0000028211, and for Audio Signal 2, the SNR reaches 38.6881 dB with an MSE of 0.0000014988.
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