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A B S T R A C T

If given rings 𝐴 and 𝐵, a ring homomorphism 𝑓 : 𝐴→ 𝐵, and an ideal 𝐽 of 𝐵, then a new ring can be constructed
called amalgamated algebras along an ideal which is denoted by 𝐴 ⊲⊳ 𝑓 𝐽 := {(𝑎, 𝑓 (𝑎) + 𝑗) | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽} with
component-wise addition and multiplication. This paper discusses the construction, definition, properties such
as isomporhisms, and characterization of amalgamated algebras along an ideal that is a prime ring and a
Noetherian ring with detailed explanations. We also discuss its characterization as a reduced ring, which is a
continuation from the previous paper. Furthermore, we investigate its characterization as an Artinian ring by
adding an additional condition that every ideal of 𝐽 has unity.
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1. Introduction

One of research topics in algebra related to construction of a new ring from a given ring and an
ideal is amalgamated algebras along an ideal. It was first introduced by Marco D’anna, et.al [1]. This
construction is related to the construction by D.D Anderson [2]. Let 𝐴 is a commutative ring with
unity, 𝑋 is a ring without unity and a module over 𝐴. Marco D’anna, et.al [1] define multiplicative
operation as follows:

(𝑎, 𝑥) (𝑎′, 𝑥′) := (𝑎𝑎′, 𝑎𝑥′ + 𝑎′𝑥 + 𝑥𝑥′)

for all 𝑎, 𝑎′ ∈ 𝐴 and 𝑥, 𝑥′ ∈ 𝑋. This construction also motivated by Dorroh [3] about embedding from
ring without unity to ring with unity. Embedding from one ring to another ring can be shown by there
exists monomorphism from ring to other ring. In their research, Marco D’anna, et.al [1] wrote about
definition and construction of amalgamated algebras along an ideal. It can be viewed as a "pullback" or
"fiber product" but the proof was skipped. Furthermore, they discussed about its properties including
ideals and isomorphisms. Besides that, they also discussed its characterization as a reduced ring and a
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Noetherian ring. Then, we make its characterization as a reduced ring with different statement which
is a continuation from the previous paper. In addition, there is previous research by Nowakowska [4]
which discussed characterization of amalgamated algebras along an ideal is a prime ring, thus we try
to make more detailed explanations. Several proofs can be more detailed that motivate the author
to carry out related research. We also investigate characterization of amalgamated algebras along an
ideal is an Artinian ring which is not discussed in previous papers. We curious whether the properties
not only applies in Noetherian rings but also in Artinian rings. We must give additional condition
that every ideal of 𝐽 has unity. Therefore, this research discusses about the construction, definition,
properties, and characterization of amalgamated algebras along an ideal is a prime ring, a reduced
ring, a Noetherian ring, and an Artinian ring.

We begin with definition of reduced ring.

Definition 1.1. ([5]) A ring R is called reduced if 𝑟 ∈ 𝑅 and 𝑟2 = 0 then 𝑟 = 0. In other words, 𝑅 only
contains zero nilpotent element.

We want to prove a proposition from M. Atiyah [6] in which we are going to use to prove our
results. In the previous paper, the proof of this proposition was skipped.

Proposition 1.2. ([6] Proposition 6.3 (i)) Let 0 → 𝑀 ′ 𝛼−−−→ 𝑀
𝛽

−−−→ 𝑀 ′′ → 0 be an exact sequence of
modules over 𝐴 (commutative ring with unity). Then 𝑀 is a Noetherian module if and only if 𝑀 ′ and
𝑀 ′′ are Noetherian modules.

Proof. (⇒) Let 𝐿′1 ⊆ 𝐿′2 ⊆ · · · be an ascending chain in 𝑀 ′. If 𝐿′
𝑖
⊆ 𝐿′

𝑖+1 ⊂ 𝑀 ′, then 𝛼(𝐿′
𝑖
) ⊆ 𝛼(𝐿′

𝑖+1) ⊂
𝑀. As a result, an ascending chain is formed in 𝑀 as follows: 𝛼(𝐿′1) ⊆ 𝛼(𝐿′2) ⊆ · · · . Because 𝑀 is a
Noetherian module, there is a positive integer 𝑡, that satisfies

𝛼(𝐿′1) ⊆ 𝛼(𝐿′2) ⊆ · · · ⊆ 𝛼(𝐿′𝑡 ) = 𝛼(𝐿′𝑡+1) = · · · .

Since 𝛼 is injective, we obtain 𝐿′𝑡 = 𝐿
′
𝑡+1. So, the chain satisfies ascending chain condition (eventually

constant). Next, let 𝐿′′1 ⊆ 𝐿′′2 ⊆ · · · be an ascending chain in 𝑀 ′′. If 𝐿′′
𝑖
⊆ 𝐿′′

𝑖+1 ⊂ 𝑀 ′′, then 𝛽−1(𝐿′′
𝑖
) ⊆

𝛽−1(𝐿′′
𝑖+1) ⊂ 𝑀. As a result, an ascending chain is formed in 𝑀 as follows: 𝛽−1(𝐿′′1 ) ⊆ 𝛽−1(𝐿′′2 ) ⊆ · · · .

Because 𝑀 is a Noetherian module, there is a positive integer 𝑘, that satisfies

𝛽−1(𝐿′′1 ) ⊆ 𝛽−1(𝐿′′2 ) ⊆ · · · ⊆ 𝛽−1(𝐿′′𝑘 ) = 𝛽
−1(𝐿′′𝑘+1) = · · · .

We only need to show 𝐿′′
𝑘+1 ⊆ 𝐿′′

𝑘
. Let any 𝑦 ∈ 𝐿′′

𝑘+1. Since 𝛽 is surjective, there exists 𝑥 ∈ 𝑀 such that
𝛽(𝑥) = 𝑦. We have 𝑥 ∈ 𝛽−1(𝐿′′

𝑘+1). Furthermore, 𝑥 ∈ 𝛽−1(𝐿′′
𝑘
). Thus, we obtain 𝛽(𝑥) = 𝑦 ∈ 𝐿′′

𝑘
. Then

𝐿′′
𝑘
= 𝐿′′

𝑘+1. It means that the chain satisfies ascending chain conditions (eventually constant).
(⇐) Let 𝐿1 ⊆ 𝐿2 ⊆ · · · be an ascending chain in 𝑀. If 𝐿𝑖 ⊆ 𝐿𝑖+1 ⊂ 𝑀, then 𝛼−1(𝐿𝑖) ⊆ 𝛼−1(𝐿𝑖+1) ⊂ 𝑀 ′.
As a result, an ascending chain is formed in 𝑀 ′ as follows: 𝛼−1(𝐿1) ⊆ 𝛼−1(𝐿2) ⊆ · · · . Because 𝑀 ′ is a
Noetherian module, there is a positive integer 𝑟, that satisfies

𝛼−1(𝐿1) ⊆ 𝛼−1(𝐿2) ⊆ · · · ⊆ 𝛼−1(𝐿𝑟 ) = 𝛼−1(𝐿𝑟+1) = · · · .

Since 𝛼 is injective, 𝛼−1 is also injective. We obtain 𝐿𝑟 = 𝐿𝑟+1. It means that the chain satisfies
ascending chain condition (eventually constant). □

Proposition 1.3. ([6] Proposition 6.3 (ii)) Let 0 → 𝑀 ′ 𝛼−−−→ 𝑀
𝛽

−−−→ 𝑀 ′′ → 0 be an exact sequence of
modules over 𝐴 (commutative ring with unity). Then 𝑀 is an Artinian module if and only if 𝑀 ′ and
𝑀 ′′ are Artinian modules.
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Proof. (⇒) Let 𝐿′1 ⊇ 𝐿′2 ⊇ · · · be a descending chain in 𝑀 ′. If 𝐿′
𝑖
⊇ 𝐿′

𝑖+1, then 𝛼(𝐿′
𝑖
) ⊇ 𝛼(𝐿′

𝑖+1). As a
result, a descending chain is formed in 𝑀 as follows: 𝛼(𝐿′1) ⊇ 𝛼(𝐿′2) ⊇ · · · . Because 𝑀 is an Artinian
module, there is a positive integer 𝑘, that satisfies

𝛼(𝐿′1) ⊇ 𝛼(𝐿′2) ⊇ · · · ⊇ 𝛼(𝐿′𝑘) = 𝛼(𝐿
′
𝑘+1) = · · · .

Since 𝛼 is injective, we obtain 𝐿′
𝑘
= 𝐿′

𝑘+1. So, the chain satisfies descending chain condition (eventually
constant). Next, let 𝐿′′1 ⊇ 𝐿′′2 ⊇ · · · be a descending chain in 𝑀 ′′. If 𝐿′′

𝑖
⊇ 𝐿′′

𝑖+1, then 𝛽−1(𝐿′′
𝑖
) ⊇

𝛽−1(𝐿′′
𝑖+1). As a result, a descending chain is formed in 𝑀 as follows: 𝛽−1(𝐿′′1 ) ⊇ 𝛽−1(𝐿′′2 ) ⊇ · · · .

Because 𝑀 is an Artinian module, there is a positive integer 𝑡, that satisfies

𝛽−1(𝐿′′1 ) ⊇ 𝛽−1(𝐿′′2 ) ⊇ · · · ⊇ 𝛽−1(𝐿′′𝑡 ) = 𝛽−1(𝐿′′𝑡+1) = · · · .

We only need to show 𝐿′′
𝑡+1 ⊇ 𝐿′′𝑡 . Let any 𝑦 ∈ 𝐿′′𝑡 . Since 𝛽 is surjective, there is 𝑥 ∈ 𝑀 such that

𝛽(𝑥) = 𝑦. We have 𝑥 ∈ 𝛽−1(𝐿′′𝑡 ). Furthermore, 𝑥 ∈ 𝛽−1(𝐿′′
𝑡+1). Thus, we obtain 𝛽(𝑥) = 𝑦 ∈ 𝐿′′

𝑡+1. Then
𝐿′′𝑡 = 𝐿′′

𝑡+1. It means that the chain satisfies descending chain condition (eventually constant).
(⇐) Let 𝐿1 ⊇ 𝐿2 ⊇ · · · be a descending chain in 𝑀. If 𝐿𝑖 ⊇ 𝐿𝑖+1, then 𝛼−1(𝐿𝑖) ⊇ 𝛼−1(𝐿𝑖+1). As a
result, a descending chain is formed in 𝑀 ′ as follows: 𝛼−1(𝐿1) ⊇ 𝛼−1(𝐿2) ⊇ · · · . Because 𝑀 ′ is an
Artinian module, there is a positive integer 𝑠, that satisfies

𝛼−1(𝐿1) ⊇ 𝛼−1(𝐿2) ⊇ · · · ⊇ 𝛼−1(𝐿𝑠) = 𝛼−1(𝐿𝑠+1) = · · · .

Since 𝛼 is injective, 𝛼−1 is also injective. We obtain 𝐿𝑠 = 𝐿𝑠+1. It means that the chain satisfies
descending chain condition (eventually constant). □

Proposition 1.4. Let 𝑅 is a ring. If 𝐼 is an ideal of 𝐽, 𝐽 is an ideal of 𝑅, and 𝐼 has unity, then 𝐼 is
an ideal of 𝑅.

Proof. Let 𝑟 ∈ 𝑅 and 𝑖 ∈ 𝐼. Suppose that 𝐼 has unity 𝑒. Since 𝑒 ∈ 𝐼 ⊆ 𝐽 and 𝐽 is ideal of 𝑅, we have
𝑟𝑒, 𝑒𝑟 ∈ 𝐽.

Note that, since 𝐼 is ideal of 𝐽 we obtain:

𝑟𝑖 = 𝑟 (𝑒𝑖) = (𝑟𝑒)𝑖 ∈ 𝐼 (Left Ideal)

and
𝑖𝑟 = (𝑖𝑒)𝑟 = 𝑖(𝑒𝑟) ∈ 𝐼 (Right Ideal).

Therefore, 𝐼 is an ideal of 𝑅. □

2. Construction and Definition

Suppose that 𝐴 is a commutative ring with unity, 𝑅 is a ring without unity and a module over 𝐴.
Since 𝐴 and 𝑅 are modules over 𝐴, we can form a set:

𝐴 × 𝑅 = {(𝑎, 𝑟) | 𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅}.

On this set, the following operations are defined:

(𝑎1, 𝑟1) + (𝑎2, 𝑟2) = (𝑎1 + 𝑎2, 𝑟1 + 𝑟2)

and
𝑎 · (𝑎1, 𝑟1) = (𝑎𝑎1, 𝑎𝑟1)

for all (𝑎1, 𝑟1), (𝑎2, 𝑟2) ∈ 𝐴 × 𝑅 and 𝑎 ∈ 𝐴. We will show that 𝐴 × 𝑅 is a module over 𝐴.
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1. First, we will show that (𝐴 × 𝑅, +) is an abelian group.

(a) Let (𝑎1, 𝑟1), (𝑎2, 𝑟2), (𝑎3, 𝑟3) ∈ 𝐴 × 𝑅. Then

(𝑎1, 𝑟1) + ((𝑎2, 𝑟2) + (𝑎3, 𝑟3)) = (𝑎1, 𝑟1) + (𝑎2 + 𝑎3, 𝑟2 + 𝑟3)
= (𝑎1 + 𝑎2 + 𝑎3, 𝑟1 + 𝑟2 + 𝑟3)
= (𝑎1 + 𝑎2, 𝑟1 + 𝑟2) + (𝑎3, 𝑟3)
= ((𝑎1, 𝑟1) + (𝑎2, 𝑟2)) + (𝑎3, 𝑟3).

Therefore, the additive operation is associative.
(b) There is (0, 0) ∈ 𝐴 × 𝑅 such that for any (𝑎, 𝑟) ∈ 𝐴 × 𝑅 satisfies:

(𝑎, 𝑟) + (0, 0) = (𝑎 + 0, 𝑟 + 0) = (𝑎, 𝑟)

and
(0, 0) + (𝑎, 𝑟) = (0 + 𝑎, 0 + 𝑟) = (𝑎, 𝑟).

(c) Let (𝑎, 𝑟) ∈ 𝐴 × 𝑅, then there is (𝑎, 𝑟)−1 = (−𝑎,−𝑟) such that:

(𝑎, 𝑟) + (−𝑎,−𝑟) = (𝑎 + (−𝑎), 𝑟 + (−𝑟)) = (0, 0)

and
(−𝑎,−𝑟) + (𝑎, 𝑟) = (−𝑎 + 𝑎,−𝑟 + 𝑟) = (0, 0).

(d) Let (𝑎1, 𝑟1), (𝑎2, 𝑟2) ∈ 𝐴 × 𝑅. Then

(𝑎1, 𝑟1) + (𝑎2, 𝑟2) = (𝑎1 + 𝑎2, 𝑟1 + 𝑟2)
= (𝑎2 + 𝑎1, 𝑟2 + 𝑟1)
= (𝑎2, 𝑟2) + (𝑎1, 𝑟1).

Therefore, the additive operation is commutative.

2. We will show the abelian group 𝐴× 𝑅 and the scalar multiplication operation · satisfy the axiom
of module over 𝐴. We only need to show that 𝐴 × 𝑅 is a left module over 𝐴 because 𝐴 is a
commutative ring. Let (𝑎1, 𝑟1), (𝑎2, 𝑟2) ∈ 𝐴 × 𝑅 and 𝑎, 𝑎′ ∈ 𝐴. Then

𝑎 · ((𝑎1, 𝑟1) + (𝑎2, 𝑟2)) = 𝑎 · (𝑎1 + 𝑎2, 𝑟1 + 𝑟2)
= (𝑎𝑎1 + 𝑎𝑎2, 𝑎𝑟1 + 𝑎𝑟2)
= (𝑎𝑎1, 𝑎𝑟1) + (𝑎𝑎2, 𝑎𝑟2)
= 𝑎 · (𝑎1, 𝑟1) + 𝑎 · (𝑎2, 𝑟2);

(𝑎 + 𝑎′) · (𝑎1, 𝑟1) = ((𝑎 + 𝑎′)𝑎1, (𝑎 + 𝑎′)𝑟1)
= (𝑎𝑎1 + 𝑎′𝑎1, 𝑎𝑟1 + 𝑎′𝑟1)
= (𝑎𝑎1, 𝑎𝑟1) + (𝑎′𝑎1, 𝑎′𝑟1)
= 𝑎 · (𝑎1, 𝑟1) + 𝑎′ · (𝑎1, 𝑟1);

(𝑎𝑎′) · (𝑎1, 𝑟1) = (𝑎𝑎′𝑎1, 𝑎𝑎′𝑟1)
= (𝑎 · (𝑎′𝑎1, 𝑎′𝑟1))
= (𝑎 · (𝑎′ · (𝑎1, 𝑟1));



60 Eigen Mathematics Journal Vol 8 No 1 (June 2025)

and

1 · (𝑎1, 𝑟1) = (1𝑎1, 1𝑟1)
= (𝑎1, 𝑟1).

Thus, 𝐴 × 𝑅 is a module over 𝐴. Furthermore, the module is named a direct sum of 𝐴 and 𝑅 which is
denoted by 𝐴 ⊕ 𝑅. The multiplicative operation below was defined in [1] :

(𝑎1, 𝑟1) (𝑎2, 𝑟2) := (𝑎1𝑎2, 𝑎1𝑟2 + 𝑎2𝑟1 + 𝑟1𝑟2)

for all 𝑎1, 𝑎2 ∈ 𝐴 and 𝑟1, 𝑟2 ∈ 𝑅. Furthermore, in that paper, 𝐴 ¤⊕𝑅 denotes direct sum 𝐴 ⊕ 𝑅 equipped
by the multiplicative operation defined over.

We take several points from the lemma in the previous paper [1] that are related to our research
purposes.

Lemma 2.1. ([1] Lemma 2.1)

1. 𝐴 ¤⊕𝑅 is a ring with unity (1, 0) and ring 𝐴 can be embedded in the ring 𝐴 ¤⊕𝑅 where 𝑖𝐴 : 𝐴→ 𝐴 ¤⊕𝑅
defined by 𝑎 ↦→ (𝑎, 0) for all 𝑎 ∈ 𝐴.

2. 𝑅 is an ideal in 𝐴 ¤⊕𝑅.
3. If 𝑝𝐴 : 𝐴 ¤⊕𝑅 ↦→ 𝐴 is a canonical projection defined by (𝑎, 𝑥) ↦→ 𝑎 for all 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑅 then

0 → 𝑅
𝑖𝑅−−→ 𝐴 ¤⊕𝑅

𝑝𝐴−−→ 𝐴→ 0

is a split exact sequence of module over A.

Proof. We will prove this lemma which is skipped in the previous paper.

1. (a) 𝐴 ¤⊕𝑅 is an abelian group since 𝐴 ¤⊕𝑅 is a module over 𝐴.
(b) Let (𝑎1, 𝑟1), (𝑎2, 𝑟2), (𝑎3, 𝑟3) ∈ 𝐴 ¤⊕𝑅. Then

(𝑎1, 𝑟1) (𝑎2, 𝑟2) = (𝑎1𝑎2, 𝑎1𝑟2 + 𝑎2𝑟1 + 𝑟1𝑟2) ∈ 𝐴 ¤⊕𝑅

and

((𝑎1, 𝑟1) (𝑎2, 𝑟2)) (𝑎3, 𝑟3) = (𝑎1𝑎2, 𝑎1𝑟2 + 𝑎2𝑟1 + 𝑟1𝑟2) (𝑎3, 𝑟3)
= (𝑎1𝑎2𝑎3, 𝑎1𝑎2𝑟3 + 𝑎3𝑎1𝑟2 + 𝑎3𝑎2𝑟1+
𝑎3𝑟1𝑟2 + 𝑎1𝑟2𝑟3 + 𝑎2𝑟1𝑟3 + 𝑟1𝑟2𝑟3)
= (𝑎1𝑎2𝑎3, 𝑎1𝑎2𝑟3 + 𝑎1𝑎3𝑟2 + 𝑎1𝑟2𝑟3+
𝑎3𝑟2𝑟1 + 𝑟1𝑟2𝑟3)
= (𝑎1, 𝑟1) (𝑎2𝑎3, 𝑎2𝑟3 + 𝑎3𝑟2 + 𝑟2𝑟3)
= (𝑎1, 𝑟1) ((𝑎2, 𝑟2) (𝑎3, 𝑟3)).

Thus, 𝐴 ¤⊕𝑅 is a semigroup under multiplication.
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(c) Let (𝑎1, 𝑟1), (𝑎2, 𝑟2), (𝑎3, 𝑟3) ∈ 𝐴 ¤⊕𝑅. Then

(𝑎1, 𝑟1) ((𝑎2, 𝑟2) + (𝑎3, 𝑟3)) = (𝑎1, 𝑟1) (𝑎2 + 𝑎3, 𝑟2 + 𝑟3)
= (𝑎1𝑎2 + 𝑎1𝑎3, 𝑎1𝑟2 + 𝑎1𝑟3 + 𝑎2𝑟1+
𝑎3𝑟1 + 𝑟1𝑟2 + 𝑟1𝑟3)
= (𝑎1𝑎2, 𝑎1𝑟2 + 𝑎2𝑟1 + 𝑟1𝑟2)+
(𝑎1𝑎3, 𝑎1𝑟3 + 𝑎3𝑟1 + 𝑟1𝑟3)
= (𝑎1, 𝑟1) (𝑎2, 𝑟2) + (𝑎1, 𝑟1) (𝑎3, 𝑟3)

and

((𝑎1, 𝑟1) + (𝑎2, 𝑟2)) (𝑎3, 𝑟3) = (𝑎1 + 𝑎2, 𝑟1 + 𝑟2) (𝑎3, 𝑟3)
= (𝑎1𝑎3 + 𝑎2𝑎3, 𝑎1𝑟3 + 𝑎2𝑟3 + 𝑎3𝑟1+
𝑎3𝑟2 + 𝑟1𝑟3 + 𝑟2𝑟3)
= (𝑎1𝑎3, 𝑎1𝑟3 + 𝑎3𝑟1 + 𝑟1𝑟3)+
(𝑎2𝑎3, 𝑎2𝑟3 + 𝑎3𝑟2 + 𝑟2𝑟3)
= (𝑎1, 𝑟1) (𝑎3, 𝑟3) + (𝑎2, 𝑟2) (𝑎3, 𝑟3).

Thus, the distributive operation are satisfied.

Therefore, 𝐴 ¤⊕𝑅 is a ring under additive and multiplicative operations.

Let (𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅. Then
(1, 0) (𝑎, 𝑟) = (1𝑎, 1𝑟 + 𝑎0 + 0𝑟) = (𝑎, 𝑟)

and
(𝑎, 𝑟) (1, 0) = (𝑎1, 𝑎0 + 1𝑟 + 𝑟0) = (𝑎, 𝑟).

Thus, 𝐴 ¤⊕𝑅 has unity (1, 0).

Let 𝑎1, 𝑎2 ∈ 𝐴. Then

𝑖𝐴(𝑎1 + 𝑎2) = (𝑎1 + 𝑎2, 0) = (𝑎1, 0) + (𝑎2, 0) = 𝑖𝐴(𝑎1) + 𝑖𝐴(𝑎2)

and

𝑖𝐴(𝑎1𝑎2) = (𝑎1𝑎2, 0)
= (𝑎1𝑎2, 𝑎10 + 𝑎20 + 00)
= (𝑎1, 0) (𝑎2, 0)
= 𝑖𝐴(𝑎1)𝑖𝐴(𝑎2)

Thus, 𝑖𝐴 is a ring homomorphism. Furthermore,

𝐾𝑒𝑟 (𝑖𝐴) = {𝑎1 ∈ 𝐴 | 𝑖(𝑎1) = (0, 0)} = {𝑎1 ∈ 𝐴 | (𝑎1, 0) = (0, 0)} = {0}.

Therefore, 𝐴 is embedded in 𝐴 ¤⊕𝑅.
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2. To show that 𝑅 is an ideal in 𝐴 ¤⊕𝑅, it is enough to show that there is a monomorphism from
𝑅 to 𝐴 ¤⊕𝑅. We form a mapping 𝑖𝑅 : 𝑅 → 𝐴 ¤⊕𝑅 defined by 𝑖𝑅 (𝑟) = (0, 𝑟) for every 𝑟 ∈ 𝑅. Let
𝑟1, 𝑟2 ∈ 𝑅. Then

𝑖𝑅 (𝑟1 + 𝑟2) = (0, 𝑟1 + 𝑟2)
= (0, 𝑟1) + (0, 𝑟2)
= 𝑖𝑅 (𝑟1) + 𝑖𝑅 (𝑟2)

and

𝑖𝑅 (𝑟1𝑟2) = (0, 𝑟1𝑟2)
= (00, 0𝑟2 + 0𝑟1 + 𝑟1𝑟2)
= (0, 𝑟1) (0, 𝑟2)
= 𝑖𝑅 (𝑟1)𝑖𝑅 (𝑟2).

Furthermore,

𝐾𝑒𝑟 (𝑖𝑅) = {𝑟1 ∈ 𝑅 | 𝑖𝑅 (𝑟1) = (0, 0)}
= {𝑟1 ∈ 𝑅 | (0, 𝑟1) = (0, 0)}
= {0}.

3. Let 𝑝𝐴 : 𝐴 ¤⊕𝑅 ↦→ 𝐴 be a canonical projection. We will prove that, the sequence 0 → 𝑅
𝑖𝑅−−→

𝐴 ¤⊕𝑅
𝑝𝐴−−→ 𝐴→ 0 is a split exact sequence of module over A.

(a) We already know that 𝑅 and 𝐴 ¤⊕𝑅 are modules over 𝐴. We only need to show that 𝐴 is a
module over 𝐴. Since 𝐴 is a ring with unity, it is clear that 𝐴 is a module over itself.

(b) i. Let 𝑟1, 𝑟2 ∈ 𝑅 and 𝑎 ∈ 𝐴. Then

𝑖𝑅 (𝑟1 + 𝑟2) = (0, 𝑟1 + 𝑟2)
= (0, 𝑟1) + (0, 𝑟2)
= 𝑖𝑅 (𝑟1) + 𝑖𝑅 (𝑟2)

and

𝑖𝑅 (𝑎𝑟1) = (0, 𝑎𝑟1)
= 𝑎(0, 𝑟1)
= 𝑎𝑖𝑅 (𝑟1).

Therefore, 𝑖𝑅 is a module homomorphism over 𝐴.
ii. Let (𝑎1, 𝑟1), (𝑎2, 𝑟2) ∈ 𝐴 ¤⊕𝑅 and 𝑎 ∈ 𝐴. Then

𝑝𝐴((𝑎1, 𝑟1) + (𝑎2, 𝑟2)) = 𝑝𝐴((𝑎1 + 𝑎2, 𝑟1 + 𝑟2))
= 𝑎1 + 𝑎2
= 𝑝𝐴(𝑎1, 𝑟1) + 𝑝𝐴(𝑎2, 𝑟2)

and

𝑝𝐴(𝑎(𝑎1, 𝑟1)) = 𝑝𝐴(𝑎𝑎1, 𝑎𝑟1)
= 𝑎𝑎1

= 𝑎𝑝𝐴(𝑎1, 𝑟1).
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Therefore, 𝑝𝐴 is a module homomorphism over 𝐴.

(c) i. It is given from previous point (2) that 𝑖𝑅 is a ring monomorphism.
ii. Let (𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅. Then

𝐼𝑚(𝑖𝑅) = {(𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 | 𝑖(𝑟1) = (𝑎, 𝑟), for some 𝑟1 ∈ 𝑅}
= {(𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 | (0, 𝑟1) = (𝑎, 𝑟)}
= {(𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 | 𝑎 = 0, 𝑟 = 𝑟1}
= {(0, 𝑟) | 𝑟 ∈ 𝑅}

and

𝐾𝑒𝑟 (𝑝𝐴) = {(𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 | 𝑝𝐴(𝑎, 𝑟) = 0𝐴}
= {(𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 | 𝑎 = 0𝐴}
= {(0, 𝑟) | 𝑟 ∈ 𝑅}.

Thus, 𝐼𝑚(𝑖𝑅) = 𝐾𝑒𝑟 (𝑝𝐴).
iii. Let any 𝑦 ∈ 𝐴. We will prove that there exists (𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅 such that 𝑝𝐴(𝑎, 𝑟) = 𝑦.

Note that based on the definition 𝑝𝐴(𝑦, 𝑟) = 𝑦 for any 𝑟 ∈ 𝑅. Therefore, for every 𝑦 ∈ 𝐴,
there exists (𝑎, 𝑟) ∈ 𝐴 ¤⊕𝑅, namely (𝑎, 𝑟) = (𝑦, 𝑟) such that, 𝑝𝐴(𝑎, 𝑟) = 𝑦. Hence, 𝑝𝐴 is
surjective.

From (𝑎), (𝑏), (𝑐) we prove that the sequence is an exact sequence of module over A. Now, we will
show that the exact sequence is split. We know that 𝑝𝐴 is a module homomorphism. Morover,
it has been proven previously at point (1) that 𝑖𝐴 is a module homomorphism. Thus, we only
need to show that 𝑝𝐴 ◦ 𝑖𝐴 = 1𝐴, where 1𝐴 is the identity homomorphism in 𝐴. Let 𝑎 ∈ 𝐴. Then

(𝑝𝐴 ◦ 𝑖𝐴) (𝑎) = 𝑝𝐴(𝑖𝐴(𝑎)) = 𝑝𝐴((𝑎, 0)) = 𝑎.

We get 𝑝𝐴 ◦ 𝑖𝐴 = 1𝐴.

□

Lemma 2.2. ([1] Lemma 2.3) Let 𝑓 : 𝐴→ 𝐵 be a ring homomorphism and 𝐽 be an ideal of 𝐵.

1. 𝐴 ¤⊕𝐽 is a ring.
2. The mapping 𝑓 ⊲⊳ : 𝐴 ¤⊕𝐽 → 𝐴 × 𝐵 defined by (𝑎, 𝑗) ↦→ (𝑎, 𝑓 (𝑎) + 𝑗) for all 𝑎 ∈ 𝐴 and 𝑗 ∈ 𝐽 is a

ring monomorphism.
3. The mapping 𝑖𝐴 : 𝐴 → 𝐴 ¤⊕𝐽 defined by 𝑎 ↦→ (𝑎, 0) for all 𝑎 ∈ 𝐴 and 𝑖𝐽 : 𝐽 → 𝐴 ¤⊕𝐽 defined by

𝑗 ↦→ (0, 𝑗) for all 𝑗 ∈ 𝐽 are ring monomorphisms and module monomorphisms over 𝐴.
4. Let 𝑝𝐴 : 𝐴 ¤⊕𝐽 → 𝐴 is canonical projection defined by (𝑎, 𝑗) ↦→ 𝑎 for all 𝑎 ∈ 𝐴 and 𝑗 ∈ 𝐽. Then

0 → 𝐽
𝑖𝐽−→ 𝐴 ¤⊕𝐽

𝑝𝐴−−→ 𝐴→ 0

is a split exact sequence of module over 𝐴.

Proof. We will prove this lemma in which the proof is skipped in the previous paper. The ideal 𝐽 is
also 𝐽 a module over 𝐴 since 𝑓 induces 𝐽 as a natural structure of the module. Then 𝑎 · 𝑗 := 𝑓 (𝑎) 𝑗 for
all 𝑎 ∈ 𝐴 and 𝑗 ∈ 𝐽.
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1. Based on Lemma 2.1 (1) and since 𝐽 is a module over 𝐴, we have 𝐴 ¤⊕𝐽 is also a ring.
2. Let (𝑎1, 𝑗1), (𝑎2, 𝑗2) ∈ 𝐴 ¤⊕𝐽. Then

𝑓 ⊲⊳ ((𝑎1, 𝑗1) + (𝑎2, 𝑗2)) = 𝑓 ⊲⊳ (𝑎1 + 𝑎2, 𝑗1 + 𝑗2)
= (𝑎1 + 𝑎2, ( 𝑓 (𝑎1 + 𝑎2)) + ( 𝑗1 + 𝑗2))
= (𝑎1 + 𝑎2, 𝑓 (𝑎1) + 𝑓 (𝑎2) + 𝑗1 + 𝑗2)
= (𝑎1 + 𝑎2, 𝑓 (𝑎1) + 𝑗1 + 𝑓 (𝑎2) + 𝑗2)
= (𝑎1, 𝑓 (𝑎1) + 𝑗1) + (𝑎2, 𝑓 (𝑎2) + 𝑗2)
= 𝑓 ⊲⊳ (𝑎1, 𝑗1) + 𝑓 ⊲⊳ (𝑎2, 𝑗2)

and

𝑓 ⊲⊳ ((𝑎1, 𝑗1) (𝑎2, 𝑗2)) = 𝑓 ⊲⊳ (𝑎1𝑎2, 𝑎1 𝑗2 + 𝑎2 𝑗1 + 𝑗1 𝑗2)
= (𝑎1𝑎2, ( 𝑓 (𝑎1𝑎2)) + (𝑎1 𝑗2 + 𝑎2 𝑗1 + 𝑗1 𝑗2))
= (𝑎1𝑎2, 𝑓 (𝑎1) 𝑓 (𝑎2) + 𝑎1 𝑗2 + 𝑎2 𝑗1 + 𝑗1 𝑗2)
= (𝑎1𝑎2, 𝑓 (𝑎1) 𝑓 (𝑎2) + 𝑓 (𝑎1) 𝑗2 + 𝑗1 𝑓 (𝑎2) + 𝑗1 𝑗2)
= (𝑎1, 𝑓 (𝑎1) + 𝑗1) (𝑎2, 𝑓 (𝑎2) + 𝑗2)
= 𝑓 ⊲⊳ (𝑎1, 𝑗1) 𝑓 ⊲⊳ (𝑎2, 𝑗2).

Moreover,

𝐾𝑒𝑟 ( 𝑓 ⊲⊳) = {(𝑎1, 𝑗1) ∈ 𝐴 ¤⊕𝐽 | 𝑓 ⊲⊳ ((𝑎1, 𝑗1)) = (0, 0)𝐴×𝐵}
= {(𝑎1, 𝑗1) ∈ 𝐴 ¤⊕𝐽 | (𝑎1, 𝑓 (𝑎1) + 𝑗1) = (0, 0)𝐴×𝐵}
= {(𝑎1, 𝑗1) ∈ 𝐴 ¤⊕𝐽 | 𝑎1 = 0, 𝑗1 = − 𝑓 (𝑎1) = 0}
= {(0, 0)}.

Therefore, 𝑓 ⊲⊳ is a ring monomorphism.

3. (a) Since 𝐽 is also a module over 𝐴 and based on Lemma 2.1 (1), it is clear that the mapping
𝑖𝐴 is also a monomorphism.

(b) Since 𝐽 is also a module over 𝐴 and based on Lemma 2.1 (2), it is clear that the mapping
𝑖𝐽 is also a monomorphism.

4. Based on Lemma 2.1 (3) where 𝑅 is a module over 𝐴, and since 𝐽 is also a module over 𝐴, it is
clear that the sequence 0 → 𝐽

𝑖𝐽−→ 𝐴 ¤⊕𝐽
𝑝𝐴−−→ 𝐴→ 0 is a split exact sequence module over 𝐴.

□

Since 𝐴 ¤⊕𝐽 is a ring, D’anna Marco, et.al [1] define:

𝐴⊲⊳ 𝑓 𝐽 := 𝑓 ⊲⊳ (𝐴 ¤⊕𝐽) = {(𝑎, 𝑓 (𝑎) + 𝑗) | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽}.

It is called amalgamation of 𝐴 with 𝐵 along 𝐽 with respect to 𝑓 : 𝐴 → 𝐵. To prove 𝐴 ⊲⊳ 𝑓 𝐽 is
a ring, we only prove that 𝐴 ⊲⊳ 𝑓 𝐽 is subring of 𝐴× 𝐵. Let (𝑎, 𝑓 (𝑎) + 𝑗), (𝑎′, 𝑓 (𝑎′) + 𝑗 ′) ∈ 𝐴 ⊲⊳ 𝑓 𝐽. Then

(𝑎, 𝑓 (𝑎) + 𝑗) − (𝑎′, 𝑓 (𝑎′) + 𝑗 ′) = (𝑎 − 𝑎′, 𝑓 (𝑎 − 𝑎′) + ( 𝑗 − 𝑗 ′)) ∈ 𝐴 ⊲⊳ 𝑓 𝐽

and
(𝑎, 𝑓 (𝑎) + 𝑗) (𝑎′, 𝑓 (𝑎′) + 𝑗 ′) = (𝑎𝑎′, 𝑓 (𝑎𝑎′) + 𝑓 (𝑎) 𝑗 ′ + 𝑗 𝑓 (𝑎′) + 𝑗 𝑗 ′) ∈ 𝐴 ⊲⊳ 𝑓 𝐽.
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3. Pullback Construction

Definition 3.1. ( [1]𝐷𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 4.1) The set 𝐷 := 𝛼 ×𝐶 𝛽 := {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 | 𝛼(𝑎) = 𝛽(𝑏)} is named
pullback or fiber product of 𝛼 and 𝛽, where 𝛼 : 𝐴→ and 𝛽 : 𝐵 → 𝐶 are ring homomorphisms.

The image below is pullback construction in diagram form.

The mapping 𝑝𝐴 : 𝐷 → 𝐴 is defined by (𝑎, 𝑏) ↦→ 𝑎 and 𝑝𝐵 : 𝐷 → 𝐵 is defined by (𝑎, 𝑏) ↦→ 𝑏. We
will show that 𝐷 is a subring of 𝐴 × 𝐵. Let (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝐷. Then 𝛼(𝑎) = 𝛽(𝑏) and 𝛼(𝑎′) = 𝛽(𝑏′).
Thus,

(𝑎, 𝑏) − (𝑎′, 𝑏′) = (𝑎 − 𝑎′, 𝑏 − 𝑏′) ∈ 𝐷

because 𝛼(𝑎 − 𝑎′) = 𝛼(𝑎) − 𝛼(𝑎′) = 𝛽(𝑏) − 𝛽(𝑏′) = 𝛽(𝑏 − 𝑏′). Also,

(𝑎, 𝑏) (𝑎′, 𝑏′) = (𝑎𝑎′, 𝑏𝑏′) ∈ 𝐷

because 𝛼(𝑎𝑎′) = 𝛼(𝑎)𝛼(𝑎′) = 𝛽(𝑏)𝛽(𝑏′) = 𝛽(𝑏𝑏′).

Since 𝐷 and 𝐴 ⊲⊳ 𝑓 𝐽 are subring of 𝐴× 𝐵, the amalgamated algebras along an ideal can be seen as
pullback or fiber product which is explained in the proposition below.

Proposition 3.2. ( [1]𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.2) Let 𝑓 : 𝐴→ 𝐵 be a ring homomorphism and 𝐽 be an ideal of
𝐵. Then, 𝐴 ⊲⊳ 𝑓 𝐽 = 𝑓 ×𝐵/𝐽 𝜋 where 𝜋 : 𝐵 → 𝐵/𝐽 and 𝑓 := 𝜋 ◦ 𝑓 .

Proof. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Based on the Definition 3.1, we get the following:

𝑓 ×𝐵/𝐽 𝜋 = {(𝑎, 𝑏) | 𝑓 (𝑎) = 𝜋(𝑏)}
= {(𝑎, 𝑏) | 𝜋( 𝑓 (𝑎)) = 𝑏 + 𝐽}
= {(𝑎, 𝑏) | 𝑓 (𝑎) + 𝐽 = 𝑏 + 𝐽}
= {(𝑎, 𝑏) | 𝑓 (𝑎) − 𝑏 ∈ 𝐽}
= {(𝑎, 𝑏) | 𝑓 (𝑎) − 𝑏 = 𝑗 , for some 𝑗 ∈ 𝐽}
= {(𝑎, 𝑓 (𝑎) + 𝑗) | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽}
= 𝐴 ⊲⊳ 𝑓 𝐽.

□

We can characterize 𝐷 as a Noetherian ring which is explained below.

Proposition 3.3. ( [1]𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.10) With notation from Definition 3.1, 𝐷 is a Noetherian ring
if only if 𝐾𝑒𝑟 (𝛽) and 𝑝𝐴(𝐷) are Noetherian rings (Noetherian modules over 𝐷).
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Proof. Based on the Proposition 1.2, we form

0 → 𝐾𝑒𝑟 (𝛽) 𝑖−−→ 𝐷
𝑝𝐴−−−−→ 𝑝𝐴(𝐷) → 0

where 𝑖 : 𝐾𝑒𝑟 (𝛽) → 𝐷 defined by 𝑥 ↦→ (0, 𝑥) for all 𝑥 ∈ 𝐾𝑒𝑟 (𝛽). It suffices to show that the sequence
is an exact sequence of module over 𝐷.

1. (a) We will show that 𝐾𝑒𝑟 (𝛽) is a module over 𝐷. First, we will prove that 𝐾𝑒𝑟 (𝛽) is an abelian
group. It is clear 𝐾𝑒𝑟 (𝛽) ⊆ 𝐵 where 𝐵 is a ring and 𝐾𝑒𝑟 (𝛽) ≠ ∅ since ∃0 ∈ 𝐾𝑒𝑟 (𝛽). Let
𝑥1, 𝑥2 ∈ 𝐾𝑒𝑟 (𝛽). Then

𝛽(𝑥1 − 𝑥2) = 𝛽(𝑥1) − 𝛽(𝑥2) = 0 − 0 = 0.

We get 𝑥1 − 𝑥2 ∈ 𝐾𝑒𝑟 (𝛽). Next, we define the scalar multiplication operation,

· : 𝐷 × 𝐾𝑒𝑟 (𝛽) → 𝐾𝑒𝑟 (𝛽)

((𝑎, 𝑏), 𝑥) ↦→ 𝑏𝑥

and
· : 𝐾𝑒𝑟 (𝛽) × 𝐷 → 𝐾𝑒𝑟 (𝛽)

(𝑥, (𝑎, 𝑏)) ↦→ 𝑥𝑏

for all (𝑎, 𝑏) ∈ 𝐷 and 𝑥 ∈ 𝐾𝑒𝑟 (𝛽). Note that, 𝑏𝑥 ∈ 𝐾𝑒𝑟 (𝛽) since 𝛽(𝑏𝑥) = 𝛽(𝑏)𝛽(𝑥) = 𝛽(𝑏)0 =

0 and 𝑥𝑏 ∈ 𝐾𝑒𝑟 (𝛽) since 𝛽(𝑥𝑏) = 𝛽(𝑥)𝛽(𝑏) = 0𝛽(𝑏) = 0. We will show that 𝐾𝑒𝑟 (𝛽) and the
scalar multiplication operation · satisfy the axioms of left module over 𝐷.
Let 𝑥1, 𝑥2 ∈ 𝐾𝑒𝑟 (𝛽) and (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 𝐷. Then

(𝑎1, 𝑏1) · (𝑥1 + 𝑥2) = 𝑏1(𝑥1 + 𝑥2)
= 𝑏1𝑥1 + 𝑏1𝑥2
= (𝑎1, 𝑏1) · 𝑥1 + (𝑎1, 𝑏1) · 𝑥2;

((𝑎1, 𝑏1) + (𝑎2, 𝑏2)) · 𝑥1 = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2) · 𝑥1
= (𝑏1 + 𝑏2)𝑥1
= 𝑏1𝑥1 + 𝑏2𝑥1
= (𝑎1, 𝑏1) · 𝑥1 + (𝑎2, 𝑏2) · 𝑥1;

((𝑎1, 𝑏1) (𝑎2, 𝑏2)) · 𝑥1 = (𝑎1𝑎2, 𝑏1𝑏2) · 𝑥1
= 𝑏1𝑏2𝑥1

= (𝑎1, 𝑏1) · (𝑏2𝑥1)
= (𝑎1, 𝑏1) · ((𝑎2, 𝑏2) · 𝑥1);

and

(1, 1) · 𝑥1 = 1𝑥1

= 𝑥1.
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Next, we will prove that 𝐾𝑒𝑟 (𝛽) and the scalar multiplication operation · satisfy the axioms
of right module over 𝐷.
Let 𝑥1, 𝑥2 ∈ 𝐾𝑒𝑟 (𝛽) and (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 𝐷. Then

(𝑥1 + 𝑥2) · (𝑎1, 𝑏1) = (𝑥1 + 𝑥2)𝑏1
= 𝑥1𝑏1 + 𝑥2𝑏1
= 𝑥1 · (𝑎1, 𝑏1) + 𝑥2 · (𝑎1, 𝑏1);

𝑥1 · ((𝑎1, 𝑏1) + (𝑎2, 𝑏2)) = 𝑥1 · (𝑎1 + 𝑎2, 𝑏1 + 𝑏2)
= 𝑥1(𝑏1 + 𝑏2)
= 𝑥1𝑏1 + 𝑥1𝑏2
= 𝑥1 · (𝑎1, 𝑏1) + 𝑥1 · (𝑎2, 𝑏2);

𝑥1 · ((𝑎1, 𝑏1) (𝑎2, 𝑏2)) = 𝑥1 · (𝑎1𝑎2, 𝑏1𝑏2)
= 𝑥1𝑏1𝑏2

= 𝑥1𝑏1 · (𝑎2, 𝑏2)
= (𝑥1 · (𝑎1, 𝑏1)) · (𝑎2, 𝑏2);

and

𝑥1 · (1, 1) = 𝑥11
= 𝑥1.

Thus, 𝐾𝑒𝑟 (𝛽) is a module over 𝐷.
(b) Since 𝐷 is a ring, clearly 𝐷 is a module over itself.
(c) We will show that 𝑝𝐴(𝐷) is a module over 𝐷. First, we will prove that 𝑝𝐴(𝐷) is an abelian

group. It is clear that 𝑝𝐴(𝐷) ⊆ 𝐴 where 𝐴 is a ring and 𝑝𝐴(𝐷) ≠ ∅ since ∃0 ∈ 𝑝𝐴(𝐷). Let
𝑦1, 𝑦2 ∈ 𝑝𝐴(𝐷), it means that ∃(𝑦1, 𝑥1), (𝑦2, 𝑥2) ∈ 𝐷 for some 𝑥1, 𝑥2 ∈ 𝐵. Note that,

(𝑦1, 𝑥1) − (𝑦2, 𝑥2) = (𝑦1 − 𝑦2, 𝑥1 − 𝑥2) ∈ 𝐷.

We get 𝑦1 − 𝑦2 ∈ 𝑝𝐴(𝐷). Thus, 𝑝𝐴(𝐷) is an abelian group. Next, we define the scalar
multiplication operation,

· : 𝐷 × 𝑝𝐴(𝐷) → 𝑝𝐴(𝐷)
((𝑎, 𝑏), 𝑦) ↦→ 𝑎𝑦

and
· : 𝑝𝐴(𝐷) × 𝐷 → 𝑝𝐴(𝐷)

(𝑦, (𝑎, 𝑏)) ↦→ 𝑦𝑎

for all (𝑎, 𝑏), (𝑦, 𝑥) ∈ 𝐷 means 𝑎, 𝑦 ∈ 𝑝𝐴(𝐷). Note that, (𝑎, 𝑏) (𝑦, 𝑥) = (𝑎𝑦, 𝑏𝑥) ∈ 𝐷; thus,
𝑎𝑦 ∈ 𝑝𝐴(𝐷) and (𝑦, 𝑥) (𝑎, 𝑏) = (𝑦𝑎, 𝑥𝑏) ∈ 𝐷. Hence, 𝑦𝑎 ∈ 𝑝𝐴(𝐷). We will show that 𝑝𝐴(𝐷)
and the scalar multiplication operation · satisfy the axioms of left module over 𝐷.
Let 𝑦1, 𝑦2 ∈ 𝑝𝐴(𝐷) and (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 𝐷. Then

(𝑎1, 𝑏1) · (𝑦1 + 𝑦2) = 𝑎1(𝑦1 + 𝑦2)
= 𝑎1𝑦1 + 𝑎1𝑦2
= (𝑎1, 𝑏1) · 𝑦1 + (𝑎1, 𝑏1) · 𝑦2;
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((𝑎1, 𝑏1) + (𝑎2, 𝑏2)) · 𝑦1 = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2) · 𝑦1
= (𝑎1 + 𝑎2)𝑦1
= 𝑎1𝑦1 + 𝑎2𝑦1
= (𝑎1, 𝑏1) · 𝑦1 + (𝑎2, 𝑏2) · 𝑦1;

((𝑎1, 𝑏1) (𝑎2, 𝑏2)) · 𝑦1 = (𝑎1𝑎2, 𝑏1𝑏2) · 𝑦1
= 𝑎1𝑎2𝑦1

= (𝑎1, 𝑏1) · (𝑎2𝑦1)
= (𝑎1, 𝑏1) · ((𝑎2, 𝑏2) · 𝑦1);

and

(1, 1) · 𝑦1 = 1𝑦1

= 𝑦1.

Next, we will prove that 𝑝𝐴(𝐷) and the scalar multiplication operation · satisfy the axioms
of right module over 𝐷.
Let 𝑦1, 𝑦2 ∈ 𝑝𝐴(𝐷) and (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ 𝐷. Then

(𝑦1 + 𝑦2) · (𝑎1, 𝑏1) = (𝑦1 + 𝑦2)𝑎1
= 𝑦1𝑎1 + 𝑦2𝑎1
= 𝑦1 · (𝑎1, 𝑏1) + 𝑦2 · (𝑎1, 𝑏1);

𝑦1 · ((𝑎1, 𝑏1) + (𝑎2, 𝑏2)) = 𝑦1 · (𝑎1 + 𝑎2, 𝑏1 + 𝑏2)
= 𝑦1(𝑎1 + 𝑎2)
= 𝑦1𝑎1 + 𝑦1𝑎2
= 𝑦1 · (𝑎1, 𝑏1) + 𝑦1 · (𝑎2, 𝑏2);

𝑦1 · ((𝑎1, 𝑏1) (𝑎2, 𝑏2)) = 𝑦1 · (𝑎1𝑎2, 𝑏1𝑏2)
= 𝑦1𝑎1𝑎2

= 𝑦1𝑎1 · (𝑎2, 𝑏2)
= (𝑦1 · (𝑎1, 𝑏1)) · (𝑎2, 𝑏2);

and

𝑦1 · (1, 1) = 𝑦11
= 𝑦1.

Thus, 𝑝𝐴(𝐷) is a module over 𝐷.
2. (a) We will show that 𝑖 is a module homomorphism over 𝐷. Let 𝑥1, 𝑥2 ∈ 𝐾𝑒𝑟 (𝛽) and (𝑎, 𝑏) ∈ 𝐷.

Then

𝑖(𝑥1 + 𝑥2) = (0, 𝑥1 + 𝑥2)
= (0, 𝑥1) + (0, 𝑥2)
= 𝑖(𝑥1) + 𝑖(𝑥2)
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and

𝑖((𝑎, 𝑏) · 𝑥1) = 𝑖(𝑏𝑥1)
= (0, 𝑏𝑥1)
= (𝑎, 𝑏) · (0, 𝑥1)
= (𝑎, 𝑏) · 𝑖(𝑥1).

(b) We will show that 𝑝𝐴 is a module homomorphism over 𝐷. Let (𝑎, 𝑏), (𝑦, 𝑥) ∈ 𝐷. Then

𝑝𝐴((𝑎, 𝑏) + (𝑦, 𝑥)) = 𝑝𝐴((𝑎 + 𝑦, 𝑏 + 𝑥))
= 𝑎 + 𝑦
= 𝑝𝐴(𝑎, 𝑏) + 𝑝𝐴(𝑦, 𝑥)

and

𝑝𝐴((𝑎, 𝑏) · (𝑦, 𝑥)) = 𝑝𝐴(𝑎𝑦, 𝑏𝑥)
= 𝑎𝑦

= (𝑎, 𝑏) · 𝑦
= (𝑎, 𝑏) · 𝑝𝐴(𝑦, 𝑥).

3. (a) We will show that 𝑖 is injective. Let 𝑥 ∈ 𝐾𝑒𝑟 (𝛽). Then

𝐾𝑒𝑟 (𝑖) = {𝑥 ∈ 𝐾𝑒𝑟 (𝛽) | 𝑖(𝑥) = 0𝐷}
= {𝑥 ∈ 𝐾𝑒𝑟 (𝛽) | (0, 𝑥) = (0, 0)}
= {𝑥 ∈ 𝐾𝑒𝑟 (𝛽) | 𝑥 = 0}
= {0}.

(b) We will show that 𝐼𝑚(𝑖) = 𝐾𝑒𝑟 (𝑝𝐴). Let (𝑎, 𝑏) ∈ 𝐷. Then

𝐼𝑚(𝑖) = {(𝑎, 𝑏) ∈ 𝐷 | 𝑖(𝑥) = (𝑎, 𝑏), for some 𝑥 ∈ 𝐾𝑒𝑟 (𝛽)}
= {(𝑎, 𝑏) ∈ 𝐷 | (0, 𝑥) = (𝑎, 𝑏)}
= {(𝑎, 𝑏) ∈ 𝐷 | 𝑎 = 0, 𝑏 = 𝑥}
= {(0, 𝑏)}

and
𝐾𝑒𝑟 (𝑝𝐴) = {(𝑎, 𝑏) ∈ 𝐷 | 𝑝𝐴(𝑎, 𝑏) = 0𝐴} = {(𝑎, 𝑏) ∈ 𝐷 | 𝑎 = 0} = {(0, 𝑏)}.

(c) Let 𝑦 ∈ 𝐴. We will prove that there exists (𝑎, 𝑏) ∈ 𝐷 such that 𝑝𝐴((𝑎, 𝑏)) = 𝑦. Note that
based on the definition of 𝑝𝐴 we obtain 𝑝𝐴((𝑦, 𝑏)) = 𝑦 for any 𝑏 ∈ 𝐵. It means that for
every 𝑦 ∈ 𝐴 there is (𝑎, 𝑏) ∈ 𝐷, namely (𝑎, 𝑏) = (𝑦, 𝑏) such that 𝑝𝐴((𝑎, 𝑏)) = 𝑦. Thus, 𝑝𝐴 is
surjective.

Based on 1, 2, 3, it is proven that the sequence 0 → 𝐾𝑒𝑟 (𝛽) 𝑖−−→ 𝐷
𝑝𝐴−−−−→ 𝑝𝐴(𝐷) → 0 is an exact

sequence of module over 𝐷. Thus, by Proposition 1.2 we get 𝐷 is a Noetherian module over 𝐷 (𝐷
is a Noetherian ring) if and only if 𝐾𝑒𝑟 (𝛽) and 𝑝𝐴(𝐷) are Noetherian modules over 𝐷 (Noetherian
rings). □

We can characterize 𝐷 as an Artinian ring which is explained below.



70 Eigen Mathematics Journal Vol 8 No 1 (June 2025)

Proposition 3.4. With notation from Definition 3.1, 𝐷 := 𝛼×𝐶 𝛽 is an Artinian ring if only if 𝐾𝑒𝑟 (𝛽)
and 𝑝𝐴(𝐷) are Artinian rings (Artinian modules over 𝐷).

Proof. By Proposition 1.3, we prove that 0 → 𝐾𝑒𝑟 (𝛽) 𝑖−−→ 𝐷
𝑝𝐴−−−−→ 𝑝𝐴(𝐷) → 0 is exact sequence. It

is clear from Proposition 3.3 that the sequence is an exact sequence of modules over 𝐷. □

4. Properties of Amalgamated Algebras Along an Ideal

Since amalgamated algebras along an ideal is a ring, it has ideals. Furthermore, we can form
quotient rings from those ideals and identify isomorphisms using The First Fundamental Theorem of
Ring Homomorphism.

We take several points from the proposition in the previous paper [1] that are related to our
research purposes.

Proposition 4.1. ( [1]𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 5.1) Let 𝑓 : 𝐴 → 𝐵 be a ring homomorphism, 𝐽 be an ideal of 𝐵,
and 𝐴 ⊲⊳ 𝑓 𝐽 = {(𝑎, 𝑓 (𝑎) + 𝑗) | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽}.

1. Let 𝑖 : 𝐴 → 𝐴 ⊲⊳ 𝑓 𝐽 be a ring homomorphism defined by 𝑖(𝑎) := (𝑎, 𝑓 (𝑎)) for all 𝑎 ∈ 𝐴. Then 𝐴

can be embedded in 𝐴 ⊲⊳ 𝑓 𝐽.
2. Let 𝑝𝐴 : 𝐴 ⊲⊳ 𝑓 𝐽 → 𝐴 and 𝑝𝐵 : 𝐴 ⊲⊳ 𝑓 𝐽 → 𝐵. Then

(a)
𝐴 ⊲⊳ 𝑓 𝐽

({0} × 𝐽) and 𝐴 are isomorphic.

(b)
𝐴 ⊲⊳ 𝑓 𝐽

𝑓 −1(𝐽) × {0} and 𝑓 (𝐴) + 𝐽 are isomorphic.

Proof.

1. Let 𝑎 ∈ 𝐴. Then

𝐾𝑒𝑟 (𝑖) = {𝑎 ∈ 𝐴 | 𝑖(𝑎) = (0, 0)} = {𝑎 ∈ 𝐴 | (𝑎, 𝑓 (𝑎)) = (0, 0)} = {0}.

Thus, 𝐴 can be embedded in 𝐴 ⊲⊳ 𝑓 𝐽.
2. We will prove that 𝑝𝐴 is surjective, where 𝑝𝐴 : 𝐴 ⊲⊳ 𝑓 𝐽 → 𝐴 is defined by (𝑎, 𝑓 (𝑎) + 𝑗) ↦→ 𝑎. Let
𝑥 ∈ 𝐴. We will prove that there exists (𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 such that 𝑝𝐴((𝑎, 𝑓 (𝑎) + 𝑗)) = 𝑥.
Note that based on definition we obtain 𝑝𝐴((𝑥, 𝑓 (𝑥) + 𝑗)) = 𝑥 for any 𝑓 (𝑥) + 𝑗 ∈ 𝐵. It means that
for every 𝑥 ∈ 𝐴 there exists (𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽, namely (𝑎, 𝑓 (𝑎) + 𝑗) = (𝑥, 𝑓 (𝑥) + 𝑗) such that
𝑝𝐴((𝑎, 𝑓 (𝑎) + 𝑗)) = 𝑥. Therefore, 𝑝𝐴 is surjective. Next, we will prove that 𝐾𝑒𝑟 (𝑝𝐴) = {0} × 𝐽.
Let (𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽. Then

𝐾𝑒𝑟 (𝑝𝐴) = {(𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑝𝐴((𝑎, 𝑓 (𝑎) + 𝑗)) = 0𝐴}
= {(𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑎 = 0𝐴}
= {(0, 𝑓 (0) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽}
= {(0, 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽}
= {0} × 𝐽.

Furthermore, we will prove that 𝑝𝐵 (𝐴 ⊲⊳ 𝑓 𝐽) = 𝑓 (𝐴) + 𝐽.

𝑝𝐵 (𝐴 ⊲⊳ 𝑓 𝐽) = {𝑝𝐵 ((𝑎, 𝑓 (𝑎) + 𝑗)) ∈ 𝐵 | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽}
= { 𝑓 (𝑎) + 𝑗 ∈ 𝐵 | 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽}
= 𝑓 (𝐴) + 𝐽.
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Next we will prove that 𝐾𝑒𝑟 (𝑝𝐵) = 𝑓 −1(𝐽) × {0}. Let (𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽.

𝐾𝑒𝑟 (𝑝𝐵) = {(𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑝𝐵 ((𝑎, 𝑓 (𝑎) + 𝑗)) = 0𝐵}
= {(𝑎, 𝑓 (𝑎) + 𝑗) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑓 (𝑎) + 𝑗 = 0𝐵}
= {(𝑎, 0) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑓 (𝑎) = − 𝑗 = 𝑘 for some 𝑘 ∈ 𝐽}
= {(𝑎, 0) ∈ 𝐴 ⊲⊳ 𝑓 𝐽 | 𝑓 (𝑎) ∈ 𝐽}
= 𝑓 −1(𝐽) × {0}.

Therefore, using the First Fundamental Theorem of Ring Homomorphism, we have:

(a)
𝐴 ⊲⊳ 𝑓 𝐽

({0} × 𝐽) and 𝐴 are isomorphic.

(b)
𝐴 ⊲⊳ 𝑓 𝐽

𝑓 −1(𝐽) × {0} and 𝑓 (𝐴) + 𝐽 are isomorphic.

□

5. Characterization of Amalgamated Algebras Along an Ideal as Prime Rings,
Reduced Rings, Noetherian Rings, and Artinian Rings

Based on the definition, construction, and properties of amalgamated algebras along an ideal, we
can characterize amalgamated algebras along an ideal as prime rings, reduced rings, Noetherian rings,
and Artinian rings.

Proposition 5.1. ( [4]𝑇ℎ𝑒𝑜𝑟𝑒𝑚 2.8) With notation from Proposition 4.1, 𝐴 ⊲⊳ 𝑓 𝐽 is a prime ring if
only if 𝑓 (𝐴) + 𝐽 is a prime ring and 𝑓 −1(𝐽) = {0}.

Proof. (⇒) First, we will prove that 𝑓 −1(𝐽) = {0}. Let 𝐴 ⊲⊳ 𝑓 𝐽 be a prime ring. Based on Proposition
4.1 2, it is known that in the natural projections 𝑝𝐴 : 𝐴 ⊲⊳ 𝑓 𝐽 → 𝐴 and 𝑝𝐵 : 𝐴 ⊲⊳ 𝑓 𝐽 → 𝐵 we
have 𝐾𝑒𝑟 (𝑝𝐴) = {0} × 𝐽 and 𝐾𝑒𝑟 (𝑝𝐵) = 𝑓 −1(𝐽) × {0}. Thus, {0} × 𝐽 and 𝑓 −1(𝐽) × {0} are ideals in
𝐴 ⊲⊳ 𝑓 𝐽. Since 𝐴 ⊲⊳ 𝑓 𝐽 is a prime ring, ({0} × 𝐽) ( 𝑓 −1(𝐽) × {0}) = {(0, 0)} implies {0} × 𝐽 = {(0, 0)}
or 𝑓 −1(𝐽) × {0} = {(0, 0)}. Since 𝐽 ≠ {0}, we obtain 𝑓 −1(𝐽) × {0} = {(0, 0)}. Thus, it is proven
that 𝑓 −1(𝐽) = {0}. Next, we will prove that 𝑓 (𝐴) + 𝐽 is a prime ring. Based on Proposition 4.1 2,

𝐴 ⊲⊳ 𝑓 𝐽

𝑓 −1(𝐽) × {0} � 𝑓 (𝐴)+𝐽. Therefore, we get 𝐴 ⊲⊳ 𝑓 𝐽+{(0, 0)} � 𝑓 (𝐴)+𝐽, equivalently, 𝐴 ⊲⊳ 𝑓 𝐽 � 𝑓 (𝐴)+𝐽.

Since 𝐴 ⊲⊳ 𝑓 𝐽 is a prime ring, 𝑓 (𝐴) + 𝐽 is proven to be a prime ring (based on the structural property
of isomorphism).
(⇐) Since 𝑓 −1(𝐽) = {0} and based on Proposition 4.1 2, we get 𝐴 ⊲⊳ 𝑓 𝐽 + {(0, 0)} � 𝑓 (𝐴) + 𝐽.
Equivalently, 𝐴 ⊲⊳ 𝑓 𝐽 � 𝑓 (𝐴) + 𝐽. Since 𝑓 (𝐴) + 𝐽 is a prime ring, 𝐴 ⊲⊳ 𝑓 𝐽 is also a prime ring (based on
the structural property of isomorphism). □

Proposition 5.2. With notation from Proposition 4.1, 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring if only if 𝐵 is a
reduced ring and 𝑁𝑖𝑙 (𝐴) ∩ 𝑓 −1(𝐽) = {0}.

Proof. (⇒) Let 𝐴 ⊲⊳ 𝑓 𝐽 be a reduced ring. We will prove that 𝑁𝑖𝑙 (𝐴) ∩ 𝑓 −1(𝐽) = {0}. Note that,
𝑓 −1(𝐽) = 𝐾𝑒𝑟 ( 𝑓 ). Then
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𝐾𝑒𝑟 ( 𝑓 ) = {𝑎 ∈ 𝐴 | 𝑓 (𝑎) = 0 + 𝐽}
= {𝑎 ∈ 𝐴 | (𝜋 ◦ 𝑓 ) (𝑎) = 0 + 𝐽}
= {𝑎 ∈ 𝐴 | 𝜋( 𝑓 (𝑎)) = 0 + 𝐽}
= {𝑎 ∈ 𝐴 | 𝑓 (𝑎) + 𝐽 = 0 + 𝐽}
= {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ∈ 𝐽}
= {𝑎 ∈ 𝑓 −1(𝐽)}
= 𝑓 −1(𝐽).

Let 𝑎 ∈ 𝑁𝑖𝑙 (𝐴) ∩ 𝐾𝑒𝑟 ( 𝑓 ). It means that 𝑎 ∈ 𝑁𝑖𝑙 (𝐴) and 𝑎 ∈ 𝐾𝑒𝑟 ( 𝑓 ). Since 𝑎 ∈ 𝑁𝑖𝑙 (𝐴), it follows
that 𝑎𝑘 = 0𝐴 for some 𝑘 ∈ N. Since 𝑎 ∈ 𝐾𝑒𝑟 ( 𝑓 ), 𝑓 (𝑎) = 0 + 𝐽. We get (𝑎, 0) ∈ 𝑁𝑖𝑙 (𝐴 ⊲⊳ 𝑓 𝐽) because
(𝑎, 0)𝑘 = (𝑎𝑘 , 0𝑘) = (0, 0) and satisfies 𝑓 (𝑎) = 0 + 𝐽 = 𝜋(0). Since 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring, the only
nilpotent element in 𝐴 ⊲⊳ 𝑓 𝐽 is (0, 0). We obtain 𝑎 = 0. Therefore, 𝑁𝑖𝑙 (𝐴) ∩ 𝑓 −1(𝐽) = {0}. Next, we will
prove that 𝐵 is a reduced ring. Since 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring, (0, 0) is an unique nilpotent element
in 𝐴 ⊲⊳ 𝑓 𝐽. Suppose that 𝑗 ∈ 𝑁𝑖𝑙 (𝐵). We have 𝑗 𝑝 = 0 for some 𝑝 ∈ N. Then, we get (0, 𝑗) is nilpotent
element of 𝐴 ⊲⊳ 𝑓 𝐽 because (0, 𝑗) 𝑝 = (0𝑝, 𝑗 𝑝) = (0, 0) and satisfies 𝑓 (0) = 𝜋( 𝑓 (0)) = 0+ 𝐽 = 𝑗 + 𝐽 = 𝜋( 𝑗),
contradiction to 𝐴 ⊲⊳ 𝑓 𝐽 as a reduced ring. So, we obain 𝑗 = 0. Therefore, 𝐵 is a reduced ring.
(⇐) Let 𝐵 be a reduced ring and 𝑁𝑖𝑙 (𝐴) ∩ 𝑓 −1(𝐽) = {0}. Note that, 𝑓 −1(𝐽) = 𝐾𝑒𝑟 ( 𝑓 ). We shall
prove that 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring. Let (𝑎, 𝑏) ∈ 𝑁𝑖𝑙 (𝐴 ⊲⊳ 𝑓 𝐽). It means that (𝑎, 𝑏)𝑟 = (0, 0) for
some 𝑟 ∈ N. We obtain 𝑏𝑟 = 0. Then 𝑏 ∈ 𝑁𝑖𝑙 (𝐵). Since 𝐵 is reduced ring, we have 𝑏 = 0. So
(𝑎, 𝑏) = (𝑎, 0) ∈ 𝑁𝑖𝑙 (𝐴 ⊲⊳ 𝑓 𝐽). We get 𝑎 ∈ 𝑁𝑖𝑙 (𝐴) and satisfies 𝑓 (𝑎) = 𝜋( 𝑓 (𝑎)) = 𝑓 (𝑎) + 𝐽 = 0+ 𝐽 = 𝜋(0).
It implies that 𝑎 ∈ 𝐾𝑒𝑟 ( 𝑓 ). We have 𝑎 ∈ 𝑁𝑖𝑙 (𝐴) ∩ 𝐾𝑒𝑟 ( 𝑓 ). Because 𝑁𝑖𝑙 (𝐴) ∩ 𝐾𝑒𝑟 ( 𝑓 ) = {0}, 𝑎 = 0.
Consequently, (𝑎, 0) = (0, 0) ∈ 𝑁𝑖𝑙 (𝐴 ⊲⊳ 𝑓 𝐽). Thus, the only nilpotent element in 𝐴 ⊲⊳ 𝑓 𝐽 is (0, 0).
Therefore, 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring. □

Now, we characterize amalgamated algebras along an ideal as a Noetherian ring.

Proposition 5.3. ( [1]𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 5.6) With notation from Proposition 4.1 , 𝐴 ⊲⊳ 𝑓 𝐽 is a Noetherian
ring if only if 𝐴 and 𝑓 (𝐴) + 𝐽 are Noetherian rings.

Proof. (⇒) Since 𝐴 ⊲⊳ 𝑓 𝐽 is a Noetherian ring and there exist natural homomorphism rings,

𝜋1 : (𝐴 ⊲⊳ 𝑓 𝐽) →
𝐴 ⊲⊳ 𝑓 𝐽

({0} × 𝐽) and 𝜋2 : (𝐴 ⊲⊳ 𝑓 𝐽) →
𝐴 ⊲⊳ 𝑓 𝐽

𝑓 −1(𝐽) × {0}

are surjective homomorphisms. We obtain that those quotient rings are Noetherian rings. Based on
Proposition 4.1 2, 𝐴 and 𝑓 (𝐴) + 𝐽 are Noetherian rings.
(⇐) Let 𝐴 and 𝑓 (𝐴) +𝐽 be Noetherian rings. We will prove that 𝐴 ⊲⊳ 𝑓 𝐽 is a Noetherian ring. Based on
Proposition 3.2, 𝐴 ⊲⊳ 𝑓 𝐽 is equivalent to "pullback" or "fiber product" 𝑓 ×𝐵/𝐽 𝜋. Applying Proposition
3.3, we can form this sequence

0 → 𝐾𝑒𝑟 (𝜋) 𝑖−−→ 𝐴 ⊲⊳ 𝑓 𝐽
𝑝𝐴−−−−→ 𝑝𝐴(𝐴 ⊲⊳ 𝑓 𝐽) → 0.

Note that, 𝐾𝑒𝑟 (𝜋) = {𝑏 ∈ 𝐵 | 𝜋(𝑏) = 0 + 𝐽} = {𝑏 ∈ 𝐵 | 𝑏 + 𝐽 = 0 + 𝐽} = {𝑏 ∈ 𝐵 | 𝑏 ∈ 𝐽} = 𝐽 and
𝑝𝐴(𝐴 ⊲⊳ 𝑓 𝐽) = 𝐴. We obtain:

0 → 𝐽
𝑖−−→ 𝐴 ⊲⊳ 𝑓 𝐽

𝑝𝐴−−−−→ 𝐴→ 0.
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Note that, 𝐽 can be viewed as a module over 𝐴 ⊲⊳ 𝑓 𝐽 because 𝑝𝐵 induces 𝐽 as module over 𝐴 ⊲⊳ 𝑓 𝐽
with (𝑎, 𝑓 (𝑎) + 𝑗) · 𝑗1 := 𝑝𝐵 (𝑎, 𝑓 (𝑎) + 𝑗) 𝑗1 for all 𝑎 ∈ 𝐴 and 𝑗 , 𝑗1 ∈ 𝐽. Therefore, 𝐽 is a Noetherian
ring because 𝐽 as a submodule over 𝐴 ⊲⊳ 𝑓 𝐽 is an ideal of Noetherian ring 𝑓 (𝐴) + 𝐽. By applying
Proposition 3.3, because 𝐴 and 𝐽 are Noetherian rings, we have 𝐴 ⊲⊳ 𝑓 𝐽 is a Noetherian ring. □

From previous proposition, we try to investigate characterization of amalgamated algebras along
an ideal as an Artinian ring which was not discussed in previous reference paper.

Proposition 5.4. With notation from Proposition 4.1, 𝐴 ⊲⊳ 𝑓 𝐽 is an Artinian ring if only if 𝐴 and
𝑓 (𝐴) + 𝐽 are Artinian rings, where every ideal of 𝐽 has unity.

Proof. (⇒) This proof is not much different with the previous proposition. Since 𝐴 ⊲⊳ 𝑓 𝐽 is an

Artinian ring, the quotient rings
𝐴 ⊲⊳ 𝑓 𝐽

({0} × 𝐽) and
𝐴 ⊲⊳ 𝑓 𝐽

𝑓 −1(𝐽) × {0} are Artinian rings. Based on Proposition

4.1 2, 𝐴 and 𝑓 (𝐴) + 𝐽 are Artinian rings.
(⇐) Let 𝐴 and 𝑓 (𝐴) + 𝐽 be Artinian rings. Based on the Proposition 3.3, we can form the sequence

0 → 𝐾𝑒𝑟 (𝜋) 𝑖−−→ 𝐴 ⊲⊳ 𝑓 𝐽
𝑝𝐴−−−−→ 𝑝𝐴(𝐴 ⊲⊳ 𝑓 𝐽) → 0.

It is clear from Proposition 5.3 that the sequence above become the following exact sequence:

0 → 𝐽
𝑖−−→ 𝐴 ⊲⊳ 𝑓 𝐽

𝑝𝐴−−−−→ 𝐴→ 0.

Note that, 𝐽 is an ideal of 𝐵, so, 𝐽 is an ideal of 𝑓 (𝐴) + 𝐽. Let 𝐼 be an ideal of 𝐽. Since 𝐽 is an ideal
of 𝑓 (𝐴) + 𝐽 and every ideal of 𝐽 has unity, 𝐼 is an ideal of 𝑓 (𝐴) + 𝐽 from Proposition 1.4. It is known
that 𝑓 (𝐴) + 𝐽 is an Artinian ring. Thus, 𝐽 is an Artinian ring. By applying the Proposition 3.4, since
𝐴 and 𝐽 are Artinian rings we have 𝐴 ⊲⊳ 𝑓 𝐽 is an Artinian ring. □

6. Conclusion

Based on definition, construction, and properties of amalgamated algebras along an ideal we
can characterize it as prime rings, reduced rings, Noetherian rings, and Artinian rings. Especially
for reduced rings and artinian rings, 𝐴 ⊲⊳ 𝑓 𝐽 is a reduced ring if only if 𝐵 is a reduced ring and
𝑁𝑖𝑙 (𝐴) ∩ 𝑓 −1(𝐽) = {0}. We also have that 𝐴 ⊲⊳ 𝑓 𝐽 is an Artinian ring if only if 𝐴 and 𝑓 (𝐴) + 𝐽 are
Artinian rings, where every ideal of 𝐽 has unity.
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