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ABSTRACT

This study examines how well the Gaussian Process Regression (GPR) model performs in interpreting the
optimization outcomes achieved through Bayesian Optimization (BO) with Keras Tuner, specifically in the
context of Sustainable Innovation Performance (SIP). The GPR surrogate model serves to examine the outcomes
of optimization and offers valuable insights into the strategies of exploration and exploitation while seeking the
most effective hyperparameters. The evaluation of the effectiveness of GPR involved calculating the Mean
Absolute Error (MAE), which was bootstrapped 1000 times to establish a 95%. Confidence Interval (CI). This
study’s findings demonstrate the dependability of GPR in forecasting the validation loss generated by BO,
characterized by minimal prediction errors and consistent confidence intervals. The results indicate that GPR
serves as a dependable statistical method for assessing uncertainty in Bayesian-based optimization. Additionally,
they offer valuable perspectives on how exploration and exploitation strategies can be utilized to attain optimal
hyperparameter configurations. By strategically balancing exploitation and exploration, Bayesian Optimization
can enhance the process of identifying optimal hyperparameter configurations within continuous innovation
prediction models.
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1. Introduction

Hyperparameter optimization represents a pivotal phase in the formulation of machine learning
models, as it has a direct impact on the predictive performance of the model [1]. Conventional methods,
including grid search and random search, frequently exhibit computational inefficiencies and demand
significant time investment, particularly when dealing with an extensive hyperparameter space. Due to
its capacity to balance exploration and exploitation, Bayesian Optimization (BO) has become a widely
used alternative method for identifying optimal hyperparameters, thereby increasing its efficiency [2].

In Bayesian Optimization, intricate objective functions are approximated through a surrogate
model, which is designed to probabilistically direct the exploration for hyperparameters. Gaussian
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Process Regression (GPR) is a commonly utilized surrogate model. GPR is selected due to its capa-
bility to predict the value of the objective function while also offering uncertainty estimates |[3]. The
estimates of uncertainty hold significant relevance within the framework of Bayesian Optimization, as
they facilitate the exploration of unfamiliar regions with minimal risk, while simultaneously allowing
for the exploitation of regions that are already recognized for their high potential value.

The efficacy of Gaussian Process Regression as a surrogate model is contingent upon the config-
uration of its kernel. The Matérn kernel is frequently employed due to its adaptability in effectively
modeling objective function patterns that exhibit limited smoothness [4]. Conversely, acquisition
functions such as the Upper Confidence Bound (UCB) guide Bayesian Optimization (BO) in selecting
the subsequent evaluation point by balancing exploration and exploitation [5].

In the realm of sustainable innovation, the effectiveness of companies engaged in sustainability-
oriented innovation faces complex data dynamics that demand robust predictive modeling [6]. Sus-
tainable Innovation Performance (SIP), which reflects a firm’s ability to achieve innovation outcomes
that support environmental, social, and economic sustainability, is a critical construct in this context.
Bayesian Optimization (BO) with Gaussian Process Regression (GPR) has proven highly effective for
hyperparameter tuning |7, and has been successfully applied in domains such as energy forecasting
[8], state-of-health (SOH) prediction for lithium-ion batteries [9], and ecosystem service assessment
[10]. Yet, its direct application to SIP prediction remains underexplored, despite the multidimensional
complexity of sustainability indicators. This study addresses that gap by being among the first to
empirically implement BO-GPR for SIP, aiming to improve accuracy, computational efficiency, and
interpretability—factors essential for managerial decision-making in sustainable innovation strategies.

The research examines hyperparameter optimization through BO and evaluates GPR predictions in
mapping optimization outcomes. By analyzing exploration—exploitation dynamics and validation loss,
the study provides insights into GPR’s reliability within the BO process. Performance is assessed using
the Mean Absolute Error (MAE), with bootstrapping applied to establish a 95% confidence interval,
ensuring robustness and trustworthy outcomes. In doing so, the study advances understanding of
hyperparameter optimization in continuous innovation prediction models, extending the applicability
of BO-GPR to the sustainability domain.

2. Literature Review

2.1. Sustainable Innovation Performance

Sustainable Innovation Performance (SIP) is gaining prominence as essential for enterprises, espe-
cially regarding the attainment of enduring sustainability objectives in conjunction with innovation.
Evidence suggests that the pursuit of sustainability as a goal for innovation can markedly affect the
efficiency of innovation processes, as illustrated by data envelopment analysis and regression analysis
conducted within manufacturing firms [11]. Within the context of digital-based start-ups in Indonesia,
research indicates that the business model has a substantial impact on sustainable performance, with
innovation emerging as a more critical factor than customer participation [12].

Furthermore, the relationship between firm-specific capabilities such as absorptive capacity, in-
trapreneurship, and stakeholder integration and sustainable innovation has been investigated, reveal-
ing that these capabilities can strategically enhance sustainable innovation in Small and Medium-sized
Enterprises (SMEs), albeit at an early [13|. Furthermore, the importance of creating new sustainabil-
ity indicators that encompass economic, environmental, and social aspects has been highlighted to
enhance the assessment of the sustainability of innovation processes [14].

It has also been discussed about how ambidexterity can help companies be more environmen-
tally friendly. Companies that are ambidextrous may be better at coming up with new ideas and
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prolonging the life of their research and development [15|. According to [16], innovation practices
emphasizing sustainability positively influence overall organizational performance, contributing to a
deeper understanding of how corporate sustainability practices can be evaluated through innovation-
related attributes. Overall, integrating sustainability into innovation strategies and business models,
as well as strategically strengthening firm-specific capabilities, is crucial for achieving sustainable per-
formance, particularly among SMEs. This underscores the importance of SIP and the need for its
measurement across diverse organizational contexts.

2.2. Bayesian Optimization

Bayesian Optimization (BO) is an excellent technique for hyperparameter optimization, especially
suited for costly black-box functions. It functions by progressively refining a surrogate model, usually
a Gaussian Process (GP), to forecast the objective function and direct the search for optimal hyper-
parameters [17, 18]. The surrogate model equilibrates exploration and exploitation by an acquisition
function, such as the Upper Confidence Bound (UCB) (19, 20].

Gaussian Process Regression (GPR) is frequently employed in Bayesian Optimization (BO) be-
cause of its capacity to deliver uncertainty quantifications and continuous predictions [21]. The pro-
cedure entails developing a Gaussian Process model from empirical data, thereafter employing it to
forecast the goal function and identify new points for evaluation [18, 21|. Keras Tuner, a hyperpa-
rameter optimization tool, may be customized with a Matern kernel and UCB acquisition function
to successfully balance exploration and exploitation. This configuration is especially advantageous for
noisy and stochastic issues, facilitating resilient hyperparameter optimization [22|. BO’s efficacy in
hyperparameter optimization arises from its capacity to leverage previous evaluations to guide further
searches, minimizing redundant evaluations and rapidly converging to near-optimal solutions |21, 23|.
Given its advantages over grid search and random search, it is particularly well-suited for handling
complex models and big datasets |20, 21].

3. Methodology

The model is validated with K-fold cross-validation and trained using the optimal parameters.
Gaussian process regression and loss evaluation ensure the model’s robustness and alignment with the
data. Figure 1 outlines the research workflow, starting from problem identification and hyperparameter
tuning.
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Figure 1. Flowchart of Research.
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3.1. Data Collection

The distribution of surveys created using Google Forms provides the study’s primary data. The
study’s respondents are from the food SMEs in Pekanbaru City. Partial Least Squares (PLS) model
technique was then used to extract the latent score from the collected data. This latent score illustrates
the link between strategic orientations and the performance of sustainable innovation (SIP). The Ar-
tificial Neural Network (ANN) model used the input as the latent score value. Bayesian Optimization
(BO) is used to maximize hyperparameters thereby guiding the growth of the ANN model. There
were 100 total trials conducted to find the ideal arrangement that fits the objectives of the study
and the characteristics of the data. Examining how each hyperparameter affects the performance of
the model helps one to optimize them. Every hyperparameter has predefined value limits meant to
cover a variety of potential configurations. Table 1 lists the key hyperparameters applied in this work
together with their data types.

Table 1. Hyperparameter Configuration.

No. Hyperparameter Data Type

1 units _input int64

2 dropout _input float64
3 num_ layers int64

4 units 1 int64

) 12 regularization float64
6 dropout 1 float64
7 learning rate float64
8 units_ 2 int64

9 dropout 2 float64
10 activation input_relu  bool
11 activation input tanh bool
12 activation 1 relu bool
13 activation 1 tanh bool
14 activation 2 relu bool
15  activation 2 tanh bool
16  optimizer adam bool
17 optimizer rmsprop bool
18  optimizer sgd bool

3.2. Data Analysis
3.2.1. Hyperparameter Configuration

This study intends to depict the relationship between hyperparameters applied in the artificial
neural network model’s optimization by means of a heatmap. Using a correlation matrix grounded
on the Pearson correlation coefficient (r), which gauges the strength and direction of the linear link
between two variables, correlation is computed. r ranges in value from —1 to 1; r = 1 denotes a
perfect positive correlation, r = —1 denotes a perfect negative correlation, and r = 0 denotes no linear
association.

This correlation matrix is computed using Pandas’ . corr () function, using categorical data such
as activation type or optimizer encoded using one-hot encoding to be treated as numerical variables.
Using the Seaborn library, this heat map was produced with a color scale reflecting the degree of cor-
relation: yellow represents a strong positive correlation, dark blue shows a strong negative correlation,
and light blue to green indicates a weak or negligible link. Strong connections—both positive and
negative—as well as relationships approaching zero are ignored in this analysis since they are deemed
irrelevant using a significant criterion of |r| > 0.5.
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3.2.2. Hyperparameter Optimization

Hyperparameter optimization seeks to minimize the loss function of the artificial neural network
model by identifying the optimal combination of hyperparameters. This procedure employs Bayesian
Optimization (BO), utilizing Gaussian Processes (GP) to improve predictions. The procedures for
optimization are as follows.

e Gaussian Process Prior Distribution.

The procedure commences with random sampling from the hyperparameter space, creating an
initial dataset that serves as the Bayesian Optimization prior distribution. The primary aim is
to reduce the objective function f(h), where h represents the uncertain hyperparameter. The
prior distribution is determined by the mean function u(h) and the covariance function k(h, h’),
as indicated in Equation 1. The covariance function employed is the Matern Kernel with v = 2.5,
as delineated in Equation 2. This method aids in estimating the ideal hyperparameter values
derived from the initial data.

f(h) ~ GP(u(h), k(h, h")). (1)

kMatern(ha h,) = 0-2 1

(2)
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e Posterior Distribution Updates of the Gaussian Process.
Subsequent to the preliminary assessment, the Gaussian Process (GP) model is updated using
new observational data. This update yields a posterior distribution, as shown in Equation 77,
which can be used to predict unexplored hyperparameter configurations. The mean function
u(H) and the covariance function K(H, H) facilitate the continuous refinement of the objective
function estimation, thereby enhancing the accuracy of subsequent hyperparameter selections.

p(f | D) = GP(,uposterior(h)’ kposterior(ha h,)) (3)
y w(H)| [K(H,H)+0? K(H, h.)
[f*} NN([,u(h*) [ K(h H) K(h*,h*)D' (4)

e Upper Confidence Bound Acquisition Function (GP-UCB).

The Upper Confidence Bound (UCB) function is employed to determine the subsequent hy-
perparameter, balancing exploration of uncertain regions and exploitation of well-performing
areas, as articulated in Equation 5. The acquisition function is regulated by the parameter 3,
with a larger 8 value promoting exploration and a lower value emphasizing exploitation, as seen
in Equation 6. The method is reiterated until the established stopping criteria are satisfied,
namely after 100 iterations, at which point the optimal hyperparameters will be employed for
final training.

ayen(h; B) = u(h) — o (h). (5)

hpext = arg HEH aqu(h;ﬂ)- (6>
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3.2.3. Post-Hoc Analysis of Hyperparameter Optimization

Post-hoc analysis aims to validate the results of hyperparameter optimization performed with
Bayesian Optimization (BO) on Keras Tuner. This analysis uses Gaussian Process Regression (GPR)
to explore patterns in the hyperparameter space and compare the predicted validation loss with the
actual results from the optimization process. Several steps taken in the Post-Hoc Analysis are outlined
as follows.

e Autocorrelation Test.

The first step is to examine whether there is autocorrelation in the residual validation loss,
which represents the dependence between consecutive residual values. The residual is defined
as the difference between the actual value and the predicted value of the validation loss. The
presence of autocorrelation may indicate that the model fails to capture data patterns or vio-
lates the assumption of residual independence, which affects the stability of predictions and the
generalization of the model.

A Durbin—Watson (DW) value close to 2 indicates that the model has met the assumption of
residual independence, making the model valid for use in predictions. Conversely, if the DW
value is far from 2 (approaching 0 or 4), the model needs to be re-evaluated to correct the
residual pattern, for instance, by reviewing the model structure, adding parameters, or using
regularization techniques to reduce overfitting. The autocorrelation test statistic is computed
using Equation 7.

n

Z(et - ez—l)z

pw="2 (7)

n

2.

=1

e Gaussian Process Regression (GPR).

After verifying that the residuals do not exhibit significant autocorrelation, Gaussian Process
Regression (GPR) is used to model the objective function that predicts validation loss based on
hyperparameters modeled as a multivariate normal distribution with mean u(h) and covariance
k(h,h’), according to Equation 1. This post hoc analysis leverages the default Bayesian Opti-
mization (BO) setup provided by Keras Tuner, which employs a Matern kernel for flexibility in
modeling both smooth and non-smooth variations in the objective function. The Matern kernel
function is provided in Equation 2.
Keras Tuner is an open-source hyperparameter tuning framework built on Keras and Tensor-
Flow, supporting various strategies including Random Search, Hyperband, and Bayesian Opti-
mization, and offering a define-by-run interface for constructing custom search spaces [24]. In
its BO implementation, Keras Tuner models the objective function using a Gaussian Process
surrogate and selects candidate hyperparameter configurations iteratively using an acquisition
function—typically the Upper Confidence Bound (UCB)—to trade off exploration of uncertain
regions and exploitation of known good configurations.
To quantify the uncertainty of the surrogate model’s predictions, a Confidence Interval (CI) is
constructed based on the posterior distribution derived from the Gaussian Process after observing
data. In this analysis, a 95% CI is used, which is computed using the predictive mean u(h) and
standard deviation o (h) of the Gaussian Process. This is given formally in Equation 8.

Cl=u(h)+1.96-0(h) (8)
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e Upper Confidence Bound (GP-UCB) Acquisition Function in Post-hoc Analysis.

In addition to GP predictions, the Upper Confidence Bound (UCB) is used to evaluate whether
the experiment is directed by exploration or exploitation to select the next hyperparameter.
UCB calculates the difference between the prediction uncertainty o-(h) and the prediction mean
wu(h) as stated in Equation 4. In this analysis, 8 = 2.6 is used, following the default settings
in Keras Tuner BO. The exploration hyperparameter selection strategy is indicated when the
UCB value obtained is greater than the 8 value, while a smaller value indicates an exploitation
strategy.

e GPR Loss Validation.
After fitting the GPR model, predictive performance was evaluated using the bootstrap method,
a statistical technique for estimating the distribution of an estimate by resampling from the
existing data. In this study, 1000 bootstrap iterations were conducted to generate the empirical
distribution of error values. The primary performance metric was the Mean Absolute Error
(MAE), defined in Equation 9.

1 n

MAE = 2 15 =il (9)

i=1

where y; is the predicted value from the GPR model and y; is the observed validation loss.
Bootstrap resampling yielded the empirical distribution of MAE, from which a 95% confidence
interval was constructed. MAE was selected because it provides a natural and unambiguous
measure of average error, unlike RMSE, which disproportionately weights larger deviations [25].

4. Result and Discussion

4.1. Hyperparameter Correlation

The hyperparameter correlation heatmap analysis, which employs a significant threshold of
|r| > 0.5, identifies numerous robust relationships that can serve as a guide for the model optimization
process, as depicted in Figure 2. The activation functions in the input layer (activation_input_relu
and activation_input_tanh), the first hidden layer (activation_1_relu and activation_1_tanh),
and the second hidden layer (activation_2_relu and activation_2_tanh) exhibited a perfect neg-
ative correlation (—1). This relationship suggests that the selection of one activation function auto-
matically precludes the other in the same layer, underscoring the significance of consistency in the
selection of activation functions to guarantee optimal model performance.

Furthermore, a robust negative correlation (r = —0.69) was identified between the Adaptive Mo-
ment Estimation (Adam) optimizer and the Root Mean Square Propagation (RMSprop) optimizer,
suggesting that the utilization of one optimizer will considerably diminish the utilization of the other
optimizer. In model training, the choice of an optimizer is quite important since every optimizer has
special properties influencing the performance of neural networks in different environments. As noted
by [26], the efficacy of optimizers such as Adam, RMSProp, and Stochastic Gradient Descent (SGD)
can differ markedly, as seen by the varying accuracy rates in face expression recognition tasks. Adam
regularly demonstrates superior accuracy relative to SGD and RMSProp, underscoring the significance
of selecting optimizers that influence model performance.
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Pairwise Interaction Heatmap of Hyperparameters
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Figure 2. Hyperparameter Correlation.

4.2. Bayesian Hyperparameter Optimization

Bayesian Optimization (BO) demonstrates its efficacy in hyperparameter tuning by leveraging
probabilistic models—particularly Gaussian Process Regression (GPR)—to establish the relationship
between hyperparameter configurations and objective functions. As illustrated in Figure 3, the optimal
point was identified with a minimum validation loss of 0.16766 at Trial ID 68. At the beginning of
the optimization process (Trial ID < 40), the actual validation loss (red dots) fluctuates considerably,
reflecting high uncertainty due to limited data. However, as more trials are conducted ( Trial ID > 50),
the values stabilize near zero, suggesting increased model certainty.

The mean GPR prediction (blue line) remains consistently close to the actual validation loss,
illustrating the GPR model’s ability to accurately describe the relationship between hyperparame-
ters and validation loss. As the number of trials increases (Trial ID > 60), the model’s predictive
accuracy improves further. The Upper Confidence Bound (UCB) (dashed green line) reflects BO’s
exploration—exploitation strategy. Initially, elevated UCB values guide exploration of under-sampled
regions; later, lower UCB values signify a shift towards exploiting promising configurations. As stated
by [2|, this method enables the model to capitalize on regions with previously recognized low valida-
tion loss predictions. This finding aligns with literature indicating that Bayesian Optimization with
Gaussian Process Regression can successfully balance exploration and exploitation in hyperparameter
optimization.

The width of the 95% confidence interval (CI) (purple region) represents the model’s uncertainty.
A wide CI during early trials suggests considerable predictive uncertainty, which progressively narrows
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as additional data is incorporated. After Trial ID > 60, the CI converges tightly around the mean
prediction, indicating heightened confidence in regions with low validation loss.

Comprehensive GPR Learning Curve for Entire Fitting Process
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Figure 3. Bayesian Hyperparameter Optimization.

4.8. Bayesian Hyperparameter Optimization
4.8.1. Autocorrelation Test

The Durbin-Watson (DW) statistic of 1.6461 in the autocorrelation study for GPR prediction,
depicted in Figure 4, signifies the absence of significant autocorrelation. A DW value near 2 often
signifies that the residuals exhibit no autocorrelation, indicating the independence of the model’s
residuals. Given the absence of considerable autocorrelation, the residuals may be regarded as inde-
pendent, so allowing the post-hoc analysis to proceed with greater assurance, free from concerns of
distortions caused by residual dependency.
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Figure 4. Autocorrelation Test.
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4.3.2. Gaussian Process Regression (GPR)

Post-hoc analysis assesses the execution of exploration and exploitation tactics by Bayesian Op-
timization (BO) in the pursuit of optimal hyperparameter configurations through the application of
Gaussian Process Regression (GPR) predictions. The analytical results demonstrate that the opti-
mization process is mostly influenced by exploitation, whereas exploration is strategically performed
in multiple trials to expand the search range. Table 2 shows the results of the GPR Analysis for all

of the trials.

Table 2. GPR Analysis.

Trials Actual Val Loss GP Prediction UCB Strategy

1 0.83748 0.86085 0.55258  Exploitation
2 0.37101 0.37443 0.06558  Exploitation
3 0.64432 0.65477 0.34609  Exploitation
4 0.95278 0.95407 0.64535  Exploitation
5 1.81938 1.80635 1.49814  Exploitation
6 0.41420 0.42389 0.11524  Exploitation
7 0.63740 0.63462 0.32657  Exploitation
8 0.24012 0.25293 -0.05567 Exploitation
9 0.64931 0.67026 0.36301  Exploitation
10 0.41207 0.41283 0.10434  Exploitation
11 0.94405 0.93385 0.62639  Exploitation
12 0.42915 0.43366 0.12502  Exploitation
13 2.68014 2.67673 2.36822  Exploitation
14 1.40608 1.42157 1.11335  Exploration
15 0.30520 0.30805 -0.00013  Exploitation
16 5.90631 5.85811 5.54920  Exploitation
17 0.33596 0.34082 0.03257  Exploitation
18 1.98316 1.96841 1.65982  Exploitation
19 5.10885 4.94261 4.64298  Exploitation
20 1.59622 1.58651 1.27825  Exploration
21 2.57651 2.58781 2.28095  Exploration
22 0.40359 0.40629 0.09801  Exploration
23 1.04396 1.05043 0.74196  Exploitation
24 1.46721 1.45899 1.15030  Exploitation
25 0.33874 0.33480 0.03122  Exploitation
26 0.50514 0.50306 0.19460  Exploitation
27 3.82562 3.79802 3.49301  Exploitation
28 1.07310 1.07651 0.76774  Exploitation
29 5.69579 5.63995 5.33141  Exploration
30 2.99834 2.96089 2.65504  Exploitation
31 1.58157 1.45050 1.15909  Exploitation
32 0.90655 0.89604 0.58803  Exploitation
33 1.95181 1.93730 1.62865  Exploitation
34 2.72435 2.86359 2.56529  Exploitation
35 1.25946 1.26164 0.95322  Exploitation
36 0.42502 0.43263 0.12425  Exploitation
37 0.83293 0.83278 0.52427  Exploitation
38 0.46409 0.40261 0.13268  Exploration
39 3.49118 3.47769 3.17186  Exploitation
40 0.33240 0.33404 0.02694  Exploitation
41 0.24033 0.24109 -0.06491 Exploitation
42 0.42379 0.52250 0.23428  Exploitation
43 0.47383 0.47202 0.16528  Exploitation
44 0.20841 0.20708 -0.04845 Exploitation
45 0.20771 0.29630 0.07169  Exploitation
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Table 3. GPR Analysis.

Trials Actual Val Loss GP Prediction UCB Strategy

46 0.31091 0.30645 0.00059  Exploitation
47 0.20520 0.21708 -0.08974 Exploitation
48 0.18424 0.19337 -0.03530 Exploitation
49 0.44894 0.44721 0.14127  Exploitation
50 0.35742 0.31610 0.16657  Exploitation
51 0.25032 0.27789 0.05771  Exploitation
52 0.41012 0.42416 0.11685  Exploitation
53 0.27343 0.27281 -0.02246 Exploitation
54 0.78775 0.78694 0.47809  Exploitation
55 0.24098 0.31363 0.15223  Exploitation
56 0.20112 0.20236 -0.10218  Exploitation
57 0.21130 0.22148 -0.08699 Exploitation
58 0.32348 0.32299 0.02039  Exploitation
59 0.21304 0.22153 -0.05880 Exploitation
60 0.28768 0.25216 -0.00328 Exploitation
61 0.17628 0.17408 -0.10819 Exploitation
62 0.48098 0.62179 0.39706  Exploitation
63 0.26888 0.27016 -0.03740 Exploitation
64 0.77819 0.63931 0.41458  Exploitation
65 0.27419 0.30179 0.07820  Exploitation
66 4.84735 4.80627 4.49739  Exploitation
67 0.29824 0.29924 -0.00557 Exploitation
68 0.16766 0.17661 -0.08342 Exploitation
69 0.23811 0.24060 0.02558  Exploitation
70 0.19927 0.20067 -0.10604 Exploitation
71 0.25881 0.26390 -0.04218 Exploitation
72 0.27241 0.31061 0.14772  Exploitation
73 0.27167 0.31263 0.15858  Exploitation
74 2.00952 1.99421 1.68580  Exploitation
75 0.42724 0.31930 0.16834  Exploitation
76 0.29949 0.26070 0.03634  Exploration
7 0.27235 0.27533 -0.02862 Exploitation
78 0.30307 0.27854 0.05841  Exploitation
79 0.19797 0.20146 -0.07787 Exploitation
80 0.19881 0.20608 -0.10219 Exploitation
81 0.17353 0.17962 -0.12352  Exploitation
82 0.22675 0.25244 -0.05113 Exploitation
83 0.20955 0.21307 -0.09499 Exploitation
84 0.33449 0.30538 0.08166  Exploitation
85 0.21869 0.25376 0.02977  Exploitation
86 0.35071 0.34728 0.04058  Exploitation
87 0.19567 0.20257 -0.10609  Exploitation
88 0.26857 0.28076 -0.02671 Exploitation
89 0.38503 0.38520 0.07751  Exploitation
90 0.19439 0.24926 0.02677  Exploitation
91 0.22876 0.23148 -0.07610 Exploitation
92 0.20390 0.20200 -0.08816 Exploitation
93 0.23142 0.23638 -0.05539 Exploitation
94 0.33272 0.33886 0.03221  Exploitation
95 0.19569 0.19187 -0.08658 Exploitation
96 0.24805 0.24142 0.02485  Exploitation
97 0.20628 0.20932 -0.09936 Exploitation
98 0.29054 0.25171 0.02884  Exploitation
99 0.27008 0.27045 -0.03741 Exploitation

100 0.22067 0.22001 -0.05136 Exploitation
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4.3.3. Exploitation as the dominant strategy

Most trials demonstrate that BO prioritizes exploitation. (Specifically, trials 1-13 and 68-100).
During this phase, the validation loss numbers are extremely close to the GPR predictions, indicating
that the model can accurately map the link between hyperparameter settings and model performance.
For example, in Trial 68, with the lowest validation loss of 0.16766, the GPR prediction was just
slightly off at 0.17661. The accuracy of this forecast demonstrates how BO effectively uses the available
information to expedite convergence to the optimal configuration.

4.83.4. Strategic Exploration to broaden the search

Although exploitation predominates, exploration is nevertheless carried out at crucial points, such
as in Trials 14, 20, 22, 29, and 38, where the Upper Confidence Bound (UCB) value exceeds the
GPR projection. For example, in Trial 29, the UCB hit 5.33141, showing that the model is exploring
previously unexplored hyperparameter domains with considerable uncertainty. This strategy is critical
to ensuring that possible untested regions are not neglected. However, the low frequency of exploration
suggests a need for a better balance between exploration and exploitation.

4.3.5. Enhancement of GPR Prediction Precision

The study results indicate an enhancement in GPR prediction accuracy as the optimization process
advances. During the initial phases, the disparity between the actual validation loss and the GPR
forecast is typically substantial, indicating uncertainty stemming from insufficient data. As the data
accumulates with each trial, the predictions attain greater precision. In Trials 60-100, the GPR
forecasts closely corresponded with the actual validation loss levels, indicating the model’s enhanced
capacity to discern data patterns and accurately forecast hyperparameter performance.

4.4. GPR Loss FEvaluation

The examination of Gaussian Process Regression (GPR) predictions using Mean Absolute Error
(MAE), measured 1000 times with the bootstrap method, yields significant findings regarding the
model’s trustworthiness. This study produced an MAE value of 0.022474 with a 95% confidence
interval of [0.016213, 0.029521]. This low MAE value indicates that the average prediction error
of GPR against the actual loss value is extremely small, demonstrating the model’s capability to
accurately represent the relationship between hyperparameters and model performance. Moreover,
the narrow confidence interval reflects the stability of GPR predictions even after 1000 recalculations
with bootstrapping.

The bootstrap distribution, illustrated in Figure 5, exhibits a symmetric pattern resembling a
normal distribution. Its peak aligns closely with the actual MAE value of 0.022474, supporting
the credibility of the prediction results. The vertical reference lines in the figure—including the
MAE baseline—indicate that GPR predictions achieve substantially higher accuracy compared to
the baseline. In addition, the line representing the actual MAE lies near the apex of the bootstrap
distribution, confirming that the predicted values effectively reflect the model’s performance. The
lower and upper bounds of the confidence interval, 0.016213 and 0.029521, ensure that the GPR
prediction error remains within this interval at a 95% confidence level.

Overall, these findings demonstrate that GPR is a reliable model for forecasting loss values in
Bayesian Optimization (BO). With a low prediction error and small uncertainty, GPR effectively
guides both the exploration and exploitation processes in BO, offering precise and consistent estimates
as the optimization approaches the optimal solution.

Furthermore, this work successfully applies Bayesian Optimization (BO) for hyperparameter tun-
ing of Gaussian Process Regression (GPR) to predict Sustainable Innovation Performance (SIP),
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building on previous successful applications of BO-GPR in areas such as energy forecasting and bat-
tery state-of-health prediction. For example, [9] demonstrated the strength of BO-GPR with results
including a 0.11% MAPE and R? = 0.9915 for lithium-ion batteries. Similarly, the BO-GPR model
in this study achieves an MAE of 0.022474, with a 95% confidence interval of [0.016213, 0.029521],
reflecting its robustness in modeling SIP, a complex and multidimensional domain.

The novelty of this research lies in applying hyperparameter-optimized BO-GPR to SIP, demon-
strating its potential to deliver accurate, efficient, and interpretable predictions across environmen-
tal, social, and economic sustainability dimensions. These results provide valuable insights for
sustainability-oriented innovation.
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Figure 5. Bootstrapped GPR Loss Distribution.

5. Conclusion

Bayesian Optimization (BO) results have been effectively analyzed using Gaussian Process Re-
gression (GPR), which provides valuable insights into exploration and exploitation strategies. GPR
demonstrates strong capability in accurately predicting the validation loss produced by BO, supported
by a stable 95% confidence interval and relatively small prediction errors. These findings indicate that
GPR can be reliably used to interpret and refine BO outcomes, particularly within hyperparameter
optimization settings relevant to sustainable innovation applications. Overall, this study highlights
the reliability of GPR in guiding the exploration—exploitation mechanism of BO and in enhancing the
performance of predictive models.
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Appendices
f(h) Objective function to be minimized or target function in Gaussian process
GP Gaussian process
u(h) Mean function in Gaussian process
k(h,h') Kernel (covariance) function between two hyperparameters
p(f | D) Posterior probability of the function given the hyperparameter dataset
Hposterior (1) Posterior mean in Gaussian process

kposterior(ha h,)
kMatern(h, h,)

Posterior covariance in Gaussian process

Matérn covariance function

o? Process variance or noise variance
[ Length-scale parameter
|k — R Euclidean distance between two hyperparameter vectors
exp Exponential function
y Observation output vector
fe Function prediction at a new point
N Multivariate normal distribution
u(H) Mean function at observation data
u(h.) Mean function at prediction point
K(H,H) Covariance matrix between observation data
0'12 Noise variance multiplied by the identity matrix
K(H,h,) Covariance between observation data and prediction point
K(h.,H) Covariance between prediction point and observation data
K(h., h.) Covariance at prediction point
ayeh (l; B) UCB acquisition function value at hyperparameter h
B Acquisition function parameter
o(h) Prediction standard deviation at h
hopext Next hyperparameter to evaluate
arg min Argument that minimizes a function
DW Durbin-Watson statistic
e Residual at time ¢
CI Confidence interval
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