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ABSTRACT

Accurate rainfall prediction is crucial for supporting the agricultural sector in Lampung Province. This
research employs the Exponential Dispersion Model (EDM), a special case of the Generalized Linear Model
(GLM), incorporating a Tweedie mixture distribution with Principal Component Analysis (PCA) to reduce
correlated variables. Rainfall data were obtained from the Meteorology, Climatology, and Geophysics Agency
(BMKG) through twelve rain observation posts (2013-2022), and supplemented with precipitation data from the
General Circulation Model (GCM) obtained from the European Centre for Medium-Range Weather Forecasts
(ECMWF). The Tweedie mixture distribution was selected for its ability to handle non-normally distributed
rainfall data containing zero values. The results show that the Root Mean Square Error of Prediction (RMSEP)
for the Tweedie mixture-PCA model at the Gisting Atas station is 163.90, while the Normal-PCA model achieved
169.11. Therefore, the Tweedie mixture-PCA approach is more effective and recommended for improving rainfall
prediction in Lampung Province, offering potential benefits for agricultural planning and resource management.

Keywords: Generalized Linear Model, Tweedie Mixture, Principal Component Analysis, Exponential Dispersion Model,
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1. Introduction

As an archipelagic nation, Indonesia experiences two distinct seasons : the dry season and the
rainy season. Rainfall plays a crucial role in various sectors, particularly agriculture, irrigation, and
development planning. The agricultural sector heavily relies on stable and well-distributed rainfall to
ensure optimal crop yields [1].

Lampung Province, as one of the main food granaries in Indonesia, possesses 1.7 million hectares
of agricultural land. According to the Lampung Province Food Security, Food Crops and Horticulture
Office [2], Lampung makes a significant contribution to national agricultural production. Governor
Arinal Djunaidi reported that Lampung’s economic growth in the first quarter of 2023 exceeded the


https://issn.brin.go.id/terbit/detail/1515123376
https://issn.brin.go.id/terbit/detail/1515123595
https://eigen.unram.ac.id/index.php/eigen
mailto:marufah.mt@at.itera.ac.id
https://doi.org/10.29303/emj.v8i2.280
https://creativecommons.org/licenses/by-nc-sa/4.0/

134 E1GEN MATHEMATICS JOURNAL VoL 8 No 2 (DECEMBER 2025)

average growth in Sumatra. The province has become a major producer of agricultural commodities
and plays an important role in national food security. However, irregular and unpredictable rainfall
patterns pose significant risks, such as crop failure and reduced productivity. Lampung’s spatially
variable and complex rainfall patterns pose a challenge in understanding rainfall characteristics and
achieving accurate predictions for agricultural planning and resource management |3|.

Rainfall data recorded by the Meteorology, Climatology and Geophysics Agency (BMKG) exhibit
nonlinear, non-normally distributed, uncertain and fluctuating characteristics. This complexity ne-
cessitates the selection of appropriate models and predictions. One of the relevant predictor variables
for this analysis is precipitation data generated by the General Circulation Model (GCM). However,
GCM data has a low resolution, making it less than ideal for precise local climate prediction [4].

Given these limitations of GCM data, Statistical Downscaling (SD) techniques are necessary. This
technique is employed to link large-scale global data with local observations, reduce the dimensionality
of rainfall data, and improve modeling efficiency [5|. GCM outputs, such as precipitation, serve as
predictor variables in SD models. However, the outputs of adjacent GCM grids are often correlated,
violating the multicollinearity assumption in statistical modeling. Principal Component Analysis
(PCA) is widely recognized as a solution to this problem by reducing the number of correlated variables
and improving model efficiency [6].

Rainfall has two components: discrete and continuous. Rainfall events can occur with high inten-
sity (Y > 0) or low intensity (¥ < 0). When there is no rain (Y = 0), the distribution is discrete, whereas
when rain occurs, the distribution becomes continuous. The non-normally distributed characteristics
of rainfall make it unsuitable for use in standard normal distribution models. The Poisson distribution
assumes that rainfall is always greater than zero, while the Gamma distribution cannot accommodate
a value of zero without additional adjustment |7].

The mixed Tweedie distribution used in the Generalized Linear Model (GLM) framework effectively
addresses these challenges. Since the mixed Tweedie distribution is part of the Exponential Dispersion
Model (EDM) family, it combines the characteristics of the Poisson distribution (for non-rainfall
events) and the Gamma distribution (for rainfall intensity), making it effective for handling rainfall
data that is not normally distributed and contains a large number of zero-inflated values. In addition,
the right-skewed nature of the Tweedie distribution is in line with the natural characteristics of rainfall
which often exhibits a non-symmetrical distribution [8], [9].

Despite its many advantages, Statistical Downscaling (SD) modeling using GCM outputs often
faces multicollinearity problems, which can be overcome by Principal Component Analysis (PCA).
Studies by [10] show that PCA effectively reduces the number of correlated predictor variables, thereby
improving model efficiency and accuracy. Based on this methodology, this study integrates PCA
with the Tweedie mixture distribution to develop an innovative rainfall prediction model called the
Tweedie mixture-PCA model. The model aims to accurately predict discrete and continuous rainfall
components, including rainfall intensity and average rainfall occurrence.

This study validates the proposed model by comparing it with the standard Tweedie model, using
metrics such as Root Mean Square Error of Prediction (RMSEP) and correlation. The performance
of the model was evaluated using rainfall data obtained from 12 observation stations. This research
is expected to contribute to better agricultural planning, optimal resource management, and climate
resilience strategies in Lampung Province.
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2. Research Materials and Methods
2.1. Study Design

This research employs a quantitative, model-based approach to predict rainfall in Lampung
Province. Historical rainfall data and General Circulation Model (GCM) output data were ana-
lyzed within a Statistical Downscaling (SD) framework [5|. The objective of this study is to improve
rainfall prediction accuracy by integrating Principal Component Analysis (PCA) with a Generalized
Linear Model (GLM) using a Tweedie mixture distribution. The research design encompasses the
following steps : (1) data collection and preprocessing, (2) feature extraction using PCA, (3) model
building using GLM with a Tweedie mixture distribution, and (4) model validation using RMSEP and
correlation metrics.

2.2. Data Sources

The data used in this study originated from two primary sources.
2.2.1. Rainfall Data

Daily rainfall data from January 2013 to December 2022 (120 months) were obtained from the
Meteorology, Climatology, and Geophysics Agency (BMKG) for twelve rainfall observation posts in
Lampung Province (Table 1). These observation posts were strategically selected to represent the
diverse terrain types within the province. The geographical location of the rainfall data is situated
between —3°S to —6°S and between 104°E to 106°E units of mm/day.

As detailed in Table 1 provides a description of the data utilized in this study, specifying both the
number of observations and the variables included.

Table 1. Rainfall Data Description.
Variable Rainfall Observation Station Locations
Y(nx1) Data from twelve rainfall observation stations in Lampung Province

1. Gisting Atas 7. Pajaresuk

2. Biha 8. Sumber Rejo

3. Krui Pasar 9. Fajar Mataram

4. Balik Bukit  10. Simpang Pematang
5. Way Tuba 11. Sukadana Hilir
6.
O

Way Rerem  12. Way Urang
utput data from GCM models related to precipitation

X(nxk)

Figure 1. Location map of 12 rainfall stations of Lampung Province.
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2.2.2. GCM Data

Precipitation data from the General Circulation Model (GCM) were obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF) in NetCDF format. This data, accessed
via https://cds.climate.copernicus.eu/#!/home, comprised a 13 x 13 grid with a spatial resolution of
0.5° x 0.5°, resulting in 169 variables. These GCM data serve as predictor variables in the statistical
downscaling model.

GOCM Resolution
e.g9. HADCM2 2 .50 x 3.750

4
- Reglonal Climate Model
% Resolution e .. S0Km
Hydrology
Vegetation
=
§ %) Topography
. Social Systems

Figure 2. Schematic of the application of Statistical Downscaling techniques.

2.3. Data Preprocessing
2.8.1. Statistical Downscaling (SD)

To bridge the scale mismatch between large-scale GCM data and local rainfall observations, Sta-
tistical Downscaling (SD) techniques were applied [11]|. This process involved establishing a statistical
relationship between GCM outputs (precipitation) and observed local rainfall data. SD methods were
implemented to correct potential biases in GCM data, enhancing its suitability for local-scale rainfall
prediction. The outputs of rainfall and precipitation are used as variables in the SD model.

2.8.2. Principal Component Analysis (PCA)

Given the high dimensionality and potential multicollinearity among the 169 GCM grid variables,
Principal Component Analysis (PCA) was employed for dimensionality reduction and feature extrac-
tion [12]. PCA transforms the original set of correlated variables into a smaller set of uncorrelated
variables, known as principal components (PCs), while retaining most of the variance in the data.
The selection of the number of PCs to retain was based on the Kaiser criterion, retaining components
with standard deviation values greater than 1 [13]. In this study, the first eight principal components
(PC.1 to PC.8) were selected as predictor variables for the rainfall model, capturing the dominant
modes of variability in the GCM data.

2.4. Rainfall Modeling
2.4.1. Tweedie Mixture Distribution
The Tweedie mixture distribution was selected as the response distribution for the rainfall model

due to its ability to accommodate both the discrete (no rain) and continuous (rainfall amount) com-
ponents of rainfall data [14|. Unlike traditional distributions (e.g., Normal, Gamma, Poisson), the
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Tweedie distribution can effectively handle non-normally distributed rainfall data containing a signif-
icant number of zero values, which is a common characteristic in the study area. This distribution
belongs to the exponential dispersion model (EDM) family.

2.4.2. Generalized Linear Model (GLM)

Rainfall modeling was conducted using a Generalized Linear Model (GLM) with a Tweedie mixture
response distribution [15]. The GLM framework allows for modeling the relationship between the
Tweedie-distributed rainfall data and the selected principal components (PC.1 to PC.8) as predictor
variables. The regression model used can be formulated as

log(u) = Bo + BT x (1)

where log(u) is the link function connecting the expected value (u) with the linear combination of
predictors, By is the intercept, 7 is the vector of regression coefficients, and x represents the vector
of predictor variables (PC.1 to PC.8).

2.5. Parameter Estimation

Model parameters, including the Tweedie index parameter (p), dispersion parameter (¢), and
regression coefficients (B), were estimated using the maximum likelihood estimation (MLE) method.
Specifically, the profile likelihood method was used with the Tweedie package in R, utilizing the
tweedie.profile() function, to estimate the index parameter (p). The data analysis was performed
using R software, employing the statmod and tweedie packages.

2.6. Model Evaluation

The performance of the developed Tweedie-GLM-PCA model was evaluated using several metrics,
including

e Root Mean Squared Error of Prediction (RMSEP) : A measure of the average magnitude of the
errors in the predictions,

e Correlation : A measure of the strength and direction of the linear relationship between predicted
and observed rainfall values.

To ensure robust model evaluation, the dataset was partitioned into training and testing datasets.
The training data (e.g., 80% of the data) was used to estimate model parameters, while the testing
data (e.g., 20% of the data) was used to assess the model’s predictive performance on unseen data.

2.7. Mathematical Representation of the Tweedie Distribution

The probability density function of the Tweedie distribution is expressed as 16|

£ 16.6) = al(y.9) exp(% [y6 - k<9>]) @)

where 0 functions as the canonical parameter, while ¢ serves as the dispersion parameter, linked to the
variance via a dispersion constant. Additionally, a(y, ¢) represents the normalization constant. The
Tweedie distribution is a versatile statistical framework capable of modeling diverse data features, in-
cluding those exhibiting varying levels of skewness and kurtosis factor which is scalar and independent
of the parameters 6 [17].

The Tweedie model is a member of this distribution family, with its density function a(y, ¢), being
contingent upon these parameters. Notably, the Tweedie distribution encompasses several widely
recognized distributions, such as the normal distribution (when p = 0), the Poisson distribution (when
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p = 1), and the Gamma distribution (when p = 2). Consequently, it provides an adaptable structure
for analyzing diverse data types [18|. When applied to rainfall data, N, signifies the aggregate monthly
rainfall, N, indicates the count of rainfall events per month, and Y, denotes the rainfall observed during
the t-th event. The corresponding mathematical expression is

e—/l n
P(N =n) = Pt Vn € Ny, (3)
N = Z 11,00 (1). (4)
=1

The overall rainfall Y is defined as the cumulative amount of rainfall from each individual event.
If N = 0 then Y is zero, whereas if N > 0, Y is calculated as the sum Xy;. The probability density
function for ¥, under the condition that N > 0, is presented in 19|

u=aavy, 1 ur
a+?2 ¢(2-p)
P=17 parameterized by  §, = 2__17, . (5)
A17P (ay) 2P p-1
- 2-p y=¢(p-1urt

As stated in |15, the likelihood of no rainfall can be determined using the following formula

2-p

- Ju

n=PY=0)=e ’l=exp(——). (6)
¢(2-p)

This expression is equivalent to the subsequent equation

yna—le—y/ﬁ /lne—/l
T (na) ) ( n! ) '

P(Y,N=n|Aa,y)=dy(y) e ( (7)

With dy(y) denoting the Dirac delta function at zero, the joint distribution P(Y,N =n | 1, a,y),
can attain a closed-form expression. As detailed in 20|, this is accomplished by substituting Equation
5 into Equation 7. Consequently, the joint density function, characterized by {u, @, p}, is given by

- /12_p n=0
PY,N=n|pu,¢,p) = exp( )} X

“4(2-p)
[ 1 P "o
exp(n(— og(¢)+ _plog( Y )—log(2—p))—logf‘(n+1))
p-1 p-1 p-1
1 (u'Py p*P 2-p
_5(19—1 +2—P)_logr(p—1n)_log(y)

2.8. Data Analysis Step

The data analysis steps are as follows.
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2.8.1. Visualizations of Data Distribution Characteristics (Density Plot, Histogram, Bozplot)

This step involves descriptive analysis to understand the nature of the rainfall data.

e Density Plot (Kernel Density Estimation/KDE).
The general equation for KDE is

F0 = ik () (®)

where f(x) is estimated probability density at point x, n is number of data points, & is badwidth
(smoothig parameter), K is kernel function (e.g., Gaussian, Epanechnikov), and x; is the i-th
data point [21].
e Histogram.
— There isn’t a single equation, but it involves counting the frequency of data within each bin
(interval).
— Frequency = number of data in bin/ bin width

e Boxplot.
Displays quartiles and outliers. Calculations involve :

— Q1 (Quartile 1) : The value at the 25" percentile.

— Q2 (Median) : The value 50°" percentile.

— Q3 (Quartile 3) The value at the 75" percentile.

— IQR (Interquartile Range) : 03 — Q1.

— Upper Bound : 03+ 1.5 X IQR.

— Lower Bound : 01 —-1.5 X IQR.

— Outlier : Data outside the upper or lower bounds [22].

2.8.2. Identification of the Tweedie Distribution and Index Parameter (p)

e The Tweedie distribution is an exponential family distribution with three parameters: the index
parameter p, the scale parameter ¢ (phi), and the location parameter u (mu). The Probability
Density Function (PDF) of the Tweedie distribution does not have a closed form in general but
is defined through its characteristic function .

e The index parameter p determines the type of Tweedie distribution. For rainfall data, values
1 < p < 2 are often used, which corresponds to a compound Poisson-Gamma distribution.

2.8.3. Estimation of phi (¢) and Index Parameter with Tweedie.profile()

e The Tweedie.profile() function likely uses the profile likelihood method to find the values of [¢]
and p that maximize the likelihood function.

e The likelihood function for the Tweedie distribution (in general) is very complex and involves
integrals that are difficult to calculate analytically.

e Numerical optimization methods (e.g., Newton-Raphson) are used to find the optimal parameter
values.

2.8.4. Application of the Generalized Linear Model (GLM) with Tweedie Response

e The GLM connects the expected value of the response variable (rainfall) with a linear combina-
tion of predictors through a link function [23]. The general equation for GLM is

g(X) = XB



140 E1GEN MATHEMATICS JOURNAL VoL 8 No 2 (DECEMBER 2025)

where u is expected value of the response variable E(Y) and g() is link function (e.g., log,
identity, inverse). The choice of link function depends on the nature of the data and the Tweedie

distribution used, X is predictor matrix, and 8 is vector of regression coefficients.

e Since the response is Tweedie, the Tweedie distribution is used in the likelihood function for

parameter estimation.

2.8.5. Rainfall Prediction

After the Tweedie GLM is estimated, prediction are made using

Y =g ' (XB)

where Y is predicted rainfall value and g~!() is inverse of the link function.

2.8.6. Model Performance Evalution (RMSEP)

RMSEP (Root Mean Squared Error of Prediction) measures the prediction accuracy of the model,

that is

Y, - Y;)2
RMSEP:\/—( i~ ¥
n

where Y; is observed rainfall value, Y is predicted rainfall value, and n is number of observations [24].

3. Result and Discussion

3.1. Data Distribution Characteristics (Visualization)

To understand the characteristics of the rainfall data, visualizations were performed using density

plots, histograms, and boxplots.
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Figure 3. Data Density Plot of 12 Rain Stations in Lampung Province.

In Figure 3, the density plot of the rainfall data is shown. It is observed that the data distribution
is right-skewed, indicating that extreme rainfall events occur more frequently than low rainfall events.
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Figure 4. Histogram Plot of Data of 12 rainfall stations in Lampung Province.
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In Figure 4 displays the histogram of the rainfall data. The histogram shows that the data has

two main components :

(occurrence of rainfall), which validates the use of a mixed distribution.
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Figure 5. Boxplot of 12 rainfall stations in Lampung Province.

zero values representing (no rain) and continuous positive values indicating
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In Figure 5, the data visualization using Box-plot illustrates that the rainfall pattern at 12 stations
shows a tendency to follow the monsoon rainfall pattern, which is characterized by a shape resembling
the letter "U". This pattern indicates that rainfall intensity is at its lowest during the June to
September period, which is generally the dry season. The results of this visualization support the
mixed Tweedie distribution in the modeling, especially with the index parameter in the range 1 < p < 2.
The estimation of the value of the index parameter p is done using the profile likelihood method.

3.2. Tweedie Distribution and Index Parameter (p)
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Figure 6. Profile Likelihood plot for the estimated index parameter p.

The Tweedie distribution was selected due to its ability to model zero-inflated data without ad
hoc modifications, through its compound Poisson-Gamma structure [15|. Unlike Gamma or log-
normal distributions, the Tweedie naturally handles both discrete (no rainfall) and continuous (rainfall
amount) components. In Figure 6 shows the profile likelihood plot for the index parameter (p). The
estimated value of p is in the range of 1.2 to 2., confirming that the rainfall data follows a mixed
Tweedie distribution pattern (compound Poisson Gamma).

3.8. GLM with Tweedie Response

A Generalized Linear Model (GLM) with a Tweedie response was used to model rainfall as a
function of the first eight principal components (PC1-PC8) derived from PCA. PCA addressed multi-
collinearity among GCM grid variables, retaining the PCs with the highest standard deviations (Table
2 shows the standard deviantions for each of the first ten PCs). The GLM indicated a significant pos-
itive relationship between PC1 and rainfall (p < 0.005), suggesting that variance in rainfall explained
by PC1 contributes positively to rainfall amounts.
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Table 2. Standard deviation values for GCM predictor variables.
Principal Component Standard Deviation

PC.1 11.25
PC.2 3.31
PC.3 3.16
PCA4 2.16
PC.5 1.78
PC.6 1.47
PC.7 1.22
PC.8 1.00
PC.9 0.90
PC.10 0.82

3.4. Rainfall Prediction

The trained GLM was used to predict monthly rainfall at 12 observation stations. Figure 7
illustrates predicted versus observed rainfall at Gisting Atas; overall model accuracy at this and other
stations is summarized in Table 3.

Table 3 shows summarizes the comparison of model performance between the Tweedie-GLM-PCA
and Normal-PCA models, showing that the Tweedie-GLM-PCA model consistently yielded prediction
coser to the actual observed rainfall across all stations.

Table 3. Comparison of Actual Data & Predicted Data Prediction Results.

No Rain Gauge Station Actual Tweedie Mixed-PCA Normal-PCA
1 Gisting Atas 241.4 291.9 322.0
2 Biha 206.8 253.4 263.8
3 Krui Pasar 184.2 282.7 245.9
4 Balik Bukit 312.1 294.9 302.0
5 Way Tuba 208.3 231.1 208.4
6 Way Rerem 157.5 142.1 124.9
7 Pajaresuk 152.9 241.3 262.9
8 Sumber Rejo 148.3 133.7 116.0
9 Fajar Mataram 36.1 132.9 119.0
10 Simpang Pematang 192.7 142.6 125.0
11 Sukadana Hilir 165.0 283.6 279.0
12 Way Urang 198.6 324.5 349.1

Figure 7 shows that the model with the Tweedie-PCA distribution exhibits a consistent prediction
pattern and closely matches the actual data, so the Tweedie-PCA method has better performance
than the Normal-PCA model. The trend evident in Figure 7, with the Tweedie-PCA model exhibiting
a closer fit to the actual data, is further substantiated by the data presented in Table 3. Specifically,
Table 3 demonstrates that the RMSEP for the Gisting Atas station is lower for the Tweedie-PCA
model than for the Normal-PCA model.

In Figure 7, it can be seen that the model with the Tweedie mixture-PCA distribution shows a
consistent prediction pattern and is close to the actual data, so overall the Tweedie-PCA method has
a better ability than the Normal-PCA model so that the Tweedie mixture modeling is good enough
to be used in modeling rainfall in Lampung Province.

3.5. Model Performance FEvaluation
Model performance was evaluated using RMSEP and correlation. Table 4 shows the RMSEP and

correlation values for the Tweedie-GLM-PCA model and the Normal-PCA model. The Tweedie-GLM-
PCA model exhibits a lower RMSEP and higher correlation compared to the Normal-PCA model at
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Figure 7. Plot of prediction and actual data for 2022 using Tweedie mixed-PCA method .
most stations. Overall, the Tweedie-GLM-PCA model demonstrates superior performance in capturing
the rainfall patterns across the majority of stations in Lampung Province.

Table 4. Comparison of RMSEP and Correlation of twelve stations.
Rain Gauge Station Tweedie-GLM-PCA Normal-PCA

Gisting Atas 163.90 (0.06) 169.11 (0.17)
Biha 243.21 (0.83) 275.45 (-0.11)
Krui Pasar 103.73 (0.91) 241.61 (-0.44)
Balik Bukit 95.14 (0.37) 129.62 (-0.61)
Way Tuba 71.53 (0.38) 73.79 (0.61)
Way Rerem 103.10 (0.52) 75.82 (0.70)
Pajaresuk 99.73 (0.59) 123.78 (0.16)
Sumber Rejo 71.94 (0.22) 107.89 (0.28)
Fajar Mataram 129.54 (0.48) 125.76 (0.47)
Simpang Pematang 117.46 (-0.13) 118.16 (0.25)
Sukadana Hilir 141.34 (0.35) 142.31 (0.45)
Way Urang 264.01 (0.76) 337.52 (-0.63)

4. Conclusions

This study demonstrates that the Tweedie-GLM-PCA model provides a more effective approach
for rainfall prediction in Lampung Province compared to the Normal-PCA model. By effectively
accommodating both zero values and continuous positive values characteristic of rainfall data, the
Tweedie-GLM-PCA model achieved lower RMSEP and higher correlation at most stations, indicat-
ing improved accuracy and reliability. This improved rainfall prediction has significant potential for
supporting climate change adaptation efforts and enabling more optimal water resource management
in Lampung Province. Future studies should explore further development suggestions for subsequent
research, namely x (GCM precipitation) longitude latitude divided based on regency.
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