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A B S T R A C T

The locating chromatic number of a graph is the minimum color required for a locating coloring. This concept
is a combination of partition dimension and vertex coloring of a graph. The purpose of this paper is to determine
the locating chromatic number of the Rose graph and the barbell Rose graphs. The method used to obtain the
locating chromatic number of a graph is by determining its upper and lower bounds. In this paper, the locating
chromatic number of the Rose graphs and its barbell operation were obtained. The locating chromatic number
of Rose graph 𝑀 (𝐶𝑛) is 4 for 𝑛 ∈ {3, 4} and 5 for 𝑛 ≥ 5. Furthermore, for barbell Rose graphs, 4 for 𝑛 = 3 and
5 for 𝑛 ≥ 4.
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1. Introduction

Chartrand et al. [1] introduced locating chromatic numbers by merging two concepts in graph
theory: vertex coloring and the partition dimension of a graph. The vertex coloring of a graph is a
function that assigns a color to each vertex of such that no two adjacent vertices receive the same
color [1]. The partition dimension is an extension of the metric dimension, which was first proposed
by Chartrand et al. [2].

As research on graph invariants related to vertex identification progressed, attention also turned
to other related parameters. In this context the discussion of locating chromatic numbers has been
widely studied. Chartrand et al. [1] constructed a tree of order 𝑛 ≥ 5 with locating chromatic numbers
varying from 3 to (𝑛 − 1). Asmiati et al. determined locating chromatic number for amalgamation of
star [3] and firecracker graphs [4]. Asmiati et al. successfully found the locating chromatic number
for the amalgamation of star [3], firecracker graph [4]. In 2012, Asmiati and Baskoro [5] characterized
the loading graph of cycles with three location chromatic numbers, nonhomogeneous caterpillars and
firecracker graphs [6], barbell shadow path graphs [7]. In 2017, Asmiati et al. studied the locating
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chromatic number of 𝑛 star amalgamations connected by a path [8], and Asmiati et al. for the joint
locating chromatic number of several double star graphs [9].

The locating chromatic number for operation graph is also an interesting topic to research. In
2018, Asmiati obtained the locating chromatic number of certain barbell graphs [10]. Next, Irawan
et al. for generalized Petersen graph [11] and [12]. Furthermore, Irawan et al. for the origami graph
and its barbell [13], [14]. Damayanti et al. for the modified path with cycles [15], Prawinasti et al.
for the split cycle graphs [16], and Rahmatalia et al. for split path graphs [17]. The study of locating
chromatic number for shadow graphs was carried out by Sudarsana et al. [18].

No research has discussed the locating chromatic number on the Rose graph, as far as the literature
search has been carried out. Therefore, the locating chromatic number of the Rose graph and the
barbell Rose graphs are discussed in this paper.

2. Basic Properties

Let 𝐺 = (𝑉, 𝐸) be a connected graph and 𝑐 is a vertex coloring of 𝐺 such that for any two adjacent
vertices 𝑢 and 𝑣 in 𝐺 where 𝑐(𝑢) ≠ 𝑐(𝑣). Let 𝐶𝑝 be a color classes, then

∏
= {𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑘} is a

partition of 𝑉 (𝐺) that is induced by the coloring of 𝑐. The color code of 𝑣, 𝑐Π is the k-ordered values
{𝑑 (𝑣, 𝐶1), 𝑑 (𝑣, 𝐶2), . . . , 𝑑 (𝑣, 𝐶𝑘)} with 𝑑 (𝑣, 𝐶𝑝) = min{𝑑 (𝑣, 𝑥) | 𝑥 ∈ 𝐶𝑝} for 1 ≤ 𝑝 ≤ 𝑘. If each vertex in
𝐺has a different color code, then 𝑐 is called a locating coloring of 𝐺. The locating chromatic number
of 𝐺 is denoted by 𝜒𝐿 (𝐺) is the smallest number 𝑘 such that 𝐺 has a locating coloring.

Chartrand et al. [1] gave some characterization for the locating chromatic coloring of a graph in
Theorem 2.1.

Theorem 2.1. [1] Let 𝑐 be the locating coloring of a connected graph 𝐺. Let the set of neighbors of
a vertex 𝑓 in 𝐺, denoted by 𝑁 ( 𝑓 ), for all 𝑓 ∈ 𝐺. If 𝑓 and 𝑔 are two distinct vertices in 𝐺 such that
𝑑 (𝑔, ℎ) = 𝑑 ( 𝑓 , ℎ) for every ℎ ∈ 𝑉 (𝐺) − { 𝑓 , 𝑔}, then 𝑐( 𝑓 ) ≠ 𝑐(𝑔). In particular, if 𝑓 and 𝑔 are not
adjacent vertices in G such that 𝑁 ( 𝑓 ) = 𝑁 (𝑔), then 𝑐( 𝑓 ) ≠ 𝑐(𝑔).

This theorem showed some restrictions in the construction of vertex coloring of a graph.

Theorem 2.2. [1] The locating chromatic number of a cycle graph 𝐶𝑛 (𝑛 ≥ 3) is 3 for odd 𝑛 and 4 for
even 𝑛.

Suppose that there is a cycle graph 𝐶𝑛 with n vertices, with the vertex set 𝑉 (𝐶𝑛) = {𝑢𝑖 |1 ≤ 𝑖 ≤ 𝑛}.
The Rose graph is obtained by adding n vertices, where each new vertex is adjacent to two consecutive
vertices in the cycle. The Rose graph is a connected graph containing a cycle, with 𝑛 vertices of degree
2 and 𝑛 vertices of degree 4, denoted by 𝑀 (𝐶𝑛) [19]. Let {𝑣𝑝; 𝑝 = 1, 2, . . . , 𝑛} ∪ {𝑤𝑝; 𝑝 = 1, 2, . . . , 𝑛} be
a set of vertices of 𝑀 (𝐶𝑛) and the set of edges is {𝑣𝑝𝑣𝑝+1; 𝑝 = 1, 2, . . . , 𝑛} ∪ {𝑣𝑝𝑤𝑝; 𝑝 = 1, 2, . . . , 𝑛} ∪
{𝑣𝑝+1𝑤𝑝; 𝑝 = 1, 2, . . . , 𝑛} with 𝑣𝑛+1 = 𝑣1. The Rose barbell graph is a graph constructed by connecting
two Rose graphs 𝑀 (𝐶𝑛) and 𝑀 ′(𝐶𝑛) by an edge (𝑣1𝑣′1) as a bridge, denoted by 𝐵𝑀 (𝐶𝑛 ) . The following
will give a barbell Rose graph 𝐵𝑀 (𝐶5 ) in Figure 1.

3. Research Methods

The methodology used in this study is divided into three steps. Stage 1 is a literature review,
namely a literature search on locating chromatic number of a graph. Stage 2 is to find the lower
and upper bound of locating chromatic number for Rose graph and its barbell. Furthermore, Stage 3
establishes the theorem gained in Stage 2.
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Figure 1. Barbell Rose graph of 𝑀 (𝐶5)

4. Results and Discussion

To determine the locating chromatic number of a Rose graph (𝑀 (𝐶𝑛)) it is essential to analyze
how the structural properties of the graph affect vertex colorings that distinguish every pair of vertices
by their color code. The following theorem presents the locating chromatic number for Rose graphs
of order 𝑛 ≥ 3

Theorem 4.1. If the locating chromatic number of Rose graph (𝑀 (𝐶𝑛)) for 𝑛 ≥ 3, then

𝜒𝐿 (𝑀 (𝐶𝑛)) =
{
4; if 𝑛 = {3, 4}
5; if 𝑛 ≥ 5.

Proof. The proof consists of two cases.
Case 1.
Subcase 1.1(𝑛 = 3).
Since 𝑀 (𝐶3) contains 𝐶3, then by Theorem 2.2 𝜒𝐿 (𝑀 (𝐶3)) ≥ 3. Suppose 𝑐 is a location coloring
of 𝑀 (𝐶3) and assume it uses three colors. Without loss of generality, suppose 𝑐(𝑣1) = 𝑐(𝑣3) = 1,
then {𝑐(𝑣2), 𝑐(𝑤1)} = {2, 3}. As a result, 𝑐(𝑤2) = 3, so that 𝑐Π (𝑤1) = 𝑐Π (𝑤2), a contrary. So,
𝜒𝐿 (𝑀 (𝐶3)) ≥ 4.

Let 𝑐 be a vertex coloring using four colors as follows:

𝑐(𝑣𝑝) =

1, 𝑝 = 1;

2, 𝑝 = 2;

3, 𝑝 = 3.

𝑐(𝑤𝑝) =

1, 𝑝 = 2;

2, 𝑝 = 3;

4, 𝑝 = 1.

the color codes of 𝑀 (𝐶3):

𝑐𝜋 (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, 𝑝 = 2;

for 3rd value, 𝑝 = 3.

1, for 1st value, 𝑝 = 2, 3;

for 2nd value, 𝑝 = 1, 3;

for 3rd value, 𝑝 = 1, 2;

for 4th value, 𝑝 = 1, 2;

2, for 4th value, 𝑝 = 3.

𝑐𝜋 (𝑤𝑝) =



0, for 1st value, 𝑝 = 2;

for 2nd value, 𝑝 = 3;

for 4th value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 3;

for 2nd value, 𝑝 = 1, 2;

for 3rd value, 𝑝 = 2, 3.

2, for 3rd value, 𝑝 = 1;

for 4th value, 𝑝 = 2, 3.
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Since each vertex in 𝑀 (𝐶3), has a distinct color code, 𝑐 is a locating coloring. Consequently,
𝜒𝐿 (𝑀 (𝐶3)) ≤ 4. Therefore, 𝜒𝐿 (𝑀 (𝐶3)) = 4.
Subcase 1.2(𝑛 = 4).
Since 𝑀 (𝐶4) contains 𝐶4, then by Theorem 2.2, 𝜒𝐿 (𝑀 (𝐶4)) ≥ 4. Let 𝑐 be a vertex coloring using four
colors as follows.

𝑐(𝑣𝑝) =


1, 𝑝 = 1;

2, 𝑝 = 2;

3, 𝑝 = 3;

4, 𝑝 = 4.

𝑐(𝑤𝑝) =

1, 𝑝 = 2;

2, 𝑝 = 3, 4;

3, 𝑝 = 1.

the color codes of 𝑀 (𝐶4):

𝑐𝜋 (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, 𝑝 = 2;

for 3rd value, 𝑝 = 3;

for 4th value, 𝑝 = 4.

1, for 1st value, 𝑝 = 2, 3, 4;

for 2nd value, 𝑝 = 1, 3, 4;

for 3rd value, 𝑝 = 1, 2, 4;

for 4th value, 𝑝 = 1, 3.

2, for 4th value, 𝑝 = 3.

𝑐𝜋 (𝑤𝑝) =



0, for 1st value, 𝑝 = 2;

for 2nd value, 𝑝 = 3, 4;

for 3rd value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 4;

for 2nd value, 𝑝 = 1, 2;

for 3rd value, 𝑝 = 2, 3.

for 4th value, 𝑝 = 3, 4.

2, for 1nd value, 𝑝 = 3;

for 3rd value, 𝑝 = 4;

for 4th value, 𝑝 = 1, 2.

Since each vertex in 𝑀 (𝐶4) has a distinct color code, then 𝑐 is a locating coloring.
Consequently,𝜒𝐿 (𝑀 (𝐶4) ≤ 4. Therefore, 𝜒𝐿 (𝑀 (𝐶4)) = 4.
Case 2 (𝑛 ≥ 5) Consider two subcases.
Subcase 2.1(𝑛 ≥ 5) odd.
Since 𝑀 (𝐶𝑛) contains 𝐶𝑛, then by Theorem 2.2 we have 𝜒𝐿 (𝑀 (𝐶𝑛)) ≥ 3 for 𝑛 odd. Suppose 𝑐 is a lo-
cating coloring of 𝑀 (𝐶𝑛) and assume it uses three colors. Without loss of generality, suppose 𝑐(𝑣1) = 1
and 𝑐(𝑣2𝑝) = 2 for 𝑝 ≥ 1, then {𝑐(𝑣2𝑝+1) = 3 for 𝑝 ≥ 1. Consequently, there exists 𝑐(𝑤𝑞) = 𝑐(𝑤𝑟 ) with
1 ≠ 𝑞 ≠ 𝑟 ≠ 𝑛 and 𝑑 (𝑤𝑞, 𝑣𝑎) = 𝑑 (𝑤𝑟 , 𝑣𝑎) which causes 𝑐Π (𝑤𝑞) = 𝑐Π (𝑤𝑟 ), a contrary. Assume 𝑐 uses four
colors. Without loss of generality, suppose 𝑐(𝑣1) = 1, 𝑐(𝑣2𝑝) = 2 for 𝑝 ≥ 1, and {𝑐(𝑣2𝑝+1) = 3 for 𝑝 ≥ 1,
then 𝑐(𝑤𝑞) = 4. Consequently, there exists 𝑐(𝑤𝑟 ) = 𝑐(𝑤𝑠) with 1 ≠ 𝑟 ≠ 𝑠 ≠ 𝑛 and 𝑑 (𝑤𝑟 , 𝑣𝑎) = 𝑑 (𝑤𝑠, 𝑣𝑎)
which causes 𝑐Π (𝑤𝑟 ) = 𝑐Π (𝑤𝑠), a contrary. As result, 𝜒𝐿 (𝑀 (𝐶𝑛)) ≥ 5.

Let 𝑐 be a vertex coloring using five colors as follows:

𝑐(𝑣𝑝) =

1, 𝑝 = 1,

2, 𝑝 even,
3, 𝑝 odd and 𝑝 > 1.

𝑐(𝑤𝑝) =

1, 𝑝 ∈ {1, 𝑛},
4, 𝑝 = 1,

5, 𝑝 = 𝑛.

the color codes of 𝑀 (𝐶𝑛) are:
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𝑐Π (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, even 𝑝;

for 3rd value, odd 𝑝.

1, for 1st value, 𝑝 ∈ (1, 𝑛];
for 2nd value, odd 𝑝;

for 3rd value, even 𝑝;

for 4th value, 𝑝 = 1, 2;

for 5th value, 𝑝 = 1.

𝑝 − 1, for 4th value, 𝑝 =
[
1, 𝑛+12 + 1

)
;

𝑝, for 5th value, 𝑝 =
[
1, 𝑛+12 + 1

)
;

𝑛 + 2 − 𝑝, for 4th value, 𝑝 =
(
𝑛+1
2 + 1, 𝑛

]
;

𝑛 + 1 − 𝑝, for 5th value, 𝑝 =
(
𝑛+1
2 + 1, 𝑛

]
.

𝑐Π (𝑤𝑝) =



0, for 1st value, 𝑝 = (1, 𝑛);
for 4th value, 𝑝 = 1;

for 5th value, 𝑝 = 𝑛.

1, for 1st value, 𝑝 = 1, 𝑛;

for 2nd value, 𝑝 = [1, 𝑛);
for 3rd value, 𝑝 = (1, 𝑛] .

2, for 2nd value, 𝑝 = 𝑛;

for 3rd value, 𝑝 = 1, 𝑛.

𝑝, for 4th value, 𝑝 =
(
1, 𝑛+12

]
;

𝑝 + 1, for 5th value, 𝑝 =
[
1, 𝑛+12

]
;

𝑛 + 2 − 𝑝, for 4th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
;

𝑛 + 1 − 𝑝, for 5th value, 𝑝 =
(
𝑛+1
2 , 𝑛

)
.

Since each vertex in 𝑀 (𝐶5) for odd 𝑛 ≥ 5 has a distinct color code, 𝑐 is a locating coloring using
five colors. Consequently,𝜒𝐿 (𝑀 (𝐶𝑛) ≤ 5. Therefore, 𝜒𝐿 (𝑀 (𝐶𝑛)) = 5.
Subcase 2.2(𝑛 ≥ 5) even.
Since 𝑀 (𝐶𝑛) contains 𝐶𝑛, then by Theorem 2.2, 𝜒𝐿 (𝑀 (𝐶𝑛)) ≥ 4 for 𝑛 even. Suppose 𝑐 is a locating
coloring of 𝑀 (𝐶𝑛) and assume it uses four colors. Without loss of generality, suppose 𝑐(𝑣1) = 1 and
𝑐(𝑣2𝑝) = 2 for 𝑝 ≥ 1, and {𝑐(𝑣2𝑝+1) = 3 for 𝑝 ≥ 1, then 𝑐(𝑤𝑞) = 4. Consequently, there exists
𝑐(𝑤𝑟 ) = 𝑐(𝑤𝑠) with 1 ≠ 𝑟 ≠ 𝑠 ≠ 𝑛 and 𝑑 (𝑤𝑟 , 𝑣𝑎) = 𝑑 (𝑤𝑠, 𝑣𝑎) which causes 𝑐Π (𝑤𝑟 ) = 𝑐Π (𝑤𝑠), a contrary.
As result, 𝜒𝐿 (𝑀 (𝐶𝑛)) ≥ 5.

Let 𝑐 be a vertex coloring using five colors, we obtain:

𝑐(𝑣𝑝) =
{
1, even 𝑝;

2, odd 𝑝.
𝑐(𝑤𝑝) =


3, 𝑝 = (1, 𝑛);
4, 𝑝 = 1;

5, 𝑝 = 𝑛.

the color codes of 𝑀 (𝐶𝑛) are:

𝑐Π (𝑣𝑝) =



0, for 1st value, odd 𝑝;

for 2nd value, even 𝑝.

1, for 1st value, even 𝑝;

for 2nd value, odd 𝑝;

for 3rd value, 𝑝 = (1, 𝑛];
for 4th value, 𝑝 = 1.

2, for 3rd value, 𝑝 = 1.

𝑝 − 1, for 4th value, 𝑝 =
(
1, 𝑛2 + 1

]
;

𝑝, for 5th value, 𝑝 =
[
1, 𝑛2

]
;

𝑛 − 𝑝 + 2, for 4th value, 𝑝 =
(
𝑛
2 + 1, 𝑛

]
;

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛
2 , 𝑛

]
.

𝑐Π (𝑤𝑝) =



0, for 3rd value, 𝑝 = (1, 𝑛);
for 4th value, 𝑝 = 1;

for 5th value, 𝑝 = 𝑛.

1, for 1st value, 𝑝 = [1, 𝑛];
for 2nd value, 𝑝 = [1, 𝑛];

2, for 3rd value, 𝑝 = 1, 𝑛.

𝑝, for 4th value, 𝑝 =
(
1, 𝑛2 + 1

]
;

𝑝 + 1, for 5th value, 𝑝 =
[
1, 𝑛2

]
;

𝑛 − 𝑝 + 2, for 4th value, 𝑝 =
(
𝑛
2 + 1, 𝑛

]
;

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛
2 , 𝑛

)
.

Since each vertex in 𝑀 (𝐶𝑛) for even 𝑛 ≥ 5 has a distinct color code, 𝑐 is a locating coloring using
5 colors. Consequently, 𝜒𝐿 (𝑀 (𝐶𝑛) ≤ 5. Therefore, 𝜒𝐿 (𝑀 (𝐶𝑛)) = 5. □
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Figure 2 is an example of a minimum locating coloring of the Rose graph 𝑀 (𝐶5) with the locating
chromatic number 5.

Figure 2. A minimum locating coloring of 𝑀 (𝐶5)

After determining the locating chromatic number of the Rose graph 𝑀 (𝐶𝑛), we now turn our
attention to a more complex structure, namely the barbell Rose graph 𝐵𝑀 (𝐶𝑛 ) , which consists of two
Rose graphs connected by a bridge. The following theorem establishes the locating chromatic number
for 𝑛 ≥ 3.

Theorem 4.2. The locating chromatic number of barbell Rose graph 𝐵𝑀 (𝐶𝑛 ) for 𝑛 ≥ 3,

𝜒𝐿
(
𝐵𝑀 (𝐶𝑛 )

)
=

{
4; if 𝑛 = 3

5; if 𝑛 ≥ 4.

Proof. The proof consists of two cases.
Case 1(𝑛=3) Since the barbell Rose graph 𝐵𝑀 (𝐶3 ) contains the Rose graph 𝑀 (𝐶3), then by Theo-
rem 4.1 we have 𝜒𝐿

(
𝐵𝑀 (𝐶3 )

)
≥ 4.

Let 𝑐 be a vertex coloring using four colors as follows

𝑐(𝑣𝑝) =

1, 𝑝 = 1;

2, 𝑝 = 2;

3, 𝑝 = 3.

𝑐(𝑤𝑝) =

1, 𝑝 = 2;

2, 𝑝 = 3;

4, 𝑝 = 1.

𝑐(𝑣′𝑝) =

2, 𝑝 = 1;

3, 𝑝 = 2;

4, 𝑝 = 3;

𝑐(𝑤′
𝑝) =


1, 𝑝 = 2;

3, 𝑝 = 1;

4, 𝑝 = 3;

the color codes of 𝐵𝑀 (𝐶3 ) are:

𝑐𝜋 (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, 𝑝 = 2;

for 3rd value, 𝑝 = 3.

1, for 1st value, 𝑝 = 2, 3;

for 2nd value, 𝑝 = 1, 3;

for 3rd value, 𝑝 = 1, 2;

for 4th value, 𝑝 = 1, 2.

2, for 4th value, 𝑝 = 3.

𝑐𝜋 (𝑤𝑝) =



0, for 1st value, 𝑝 = 2;

for 2nd value, 𝑝 = 3;

for 4th value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 3;

for 2nd value, 𝑝 = 1, 2;

for 3rd value, 𝑝 = 2, 3,

2, for 3rd value, 𝑝 = 1;

for 4th value, 𝑝 = 2, 3.
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𝑐𝜋 (𝑣′𝑝) =



0, for 2nd value, 𝑝 = 1;

for 3rd value, 𝑝 = 2;

for 4th value, 𝑝 = 3.

1, for 1st value, 𝑝 = 2, 3;

for 2nd value, 𝑝 = 2, 3;

for 3rd value, 𝑝 = 1, 3;

for 4th value, 𝑝 = 1, 2.

2, for 1st value, 𝑝 = 1.

𝑐𝜋 (𝑤′
𝑝) =



0, for 1st value, 𝑝 = 2;

for 3rd value, 𝑝 = 1;

for 4th value, 𝑝 = 3.

1, for 2nd value, 𝑝 = 1, 3;

for 33d value, 𝑝 = 2, 3;

for 4th value, 𝑝 = 1, 2;

2, for 1st value, 𝑝 = 1, 3.

for 2nd value, 𝑝 = 2.

Since each vertex in 𝐵𝑀 (𝐶3 ) has a distinct color code, 𝑐 is a locating coloring.
Consequently,𝜒𝐿

(
𝐵𝑀 (𝐶3 )

)
≤ 4. Therefore, 𝜒𝐿

(
𝐵𝑀 (𝐶3 )

)
= 4.

Case 2(𝑛 ≥ 4) Consider three subcases.
Subcase 2.1(𝑛 = 4).
First, we determine the lower bound of 𝜒𝐿

(
𝐵𝑀 (𝐶4 )

)
. Since the barbell Rose graph 𝐵𝑀 (𝐶4 ) contains

the Rose graph 𝑀 (𝐶4), then by Theorem 4.1 we have 𝜒𝐿
(
𝐵𝑀 (𝐶3 )

)
≥ 4. Without loss of generality,

suppose 𝑐(𝑣1) = 1 and 𝑐(𝑣2) = 𝑐(𝑣4) = 𝑐(𝑣′1) = 2 and 𝑐(𝑤1) = 𝑐(𝑤4) = 𝑐(𝑣′2) = 𝑐(𝑣′4) = 3, then
{𝑐(𝑤′

1), 𝑐(𝑤′
4)} = {1, 4} ≥ 5. Consequently 𝑐Π (𝑣1) = 𝑐Π (𝑤′

1), a contrary. As a result, 𝜒𝐿
(
𝐵𝑀 (𝐶3 )

)
≥ 5.

Let 𝑐 be a vertex coloring using five colors as follows:

𝑐(𝑣𝑝) =


1, 𝑝 = 1;

2, 𝑝 = 2;

3, 𝑝 = 3;

3, 𝑝 = 4.

𝑐(𝑤𝑝) =

1, 𝑝 = 2;

2, 𝑝 = 3, 4;

4, 𝑝 = 1.

𝑐(𝑣′𝑝) =


2, 𝑝 = 2;

3, 𝑝 = 3;

4, 𝑝 = 4;

5, 𝑝 = 1.

𝑐(𝑤′
𝑝) =


1, 𝑝 = 2, 3;

3, 𝑝 = 4;

4, 𝑝 = 1.

the color codes of 𝐵𝑀 (𝐶4 ) are:

𝑐𝜋 (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, 𝑝 = 2;

for 3rd value, 𝑝 = 3;

for 4th value, 𝑝 = 4.

1, for 1st value, 𝑝 = 2, 3, 4;

for 2nd value, 𝑝 = 1, 3, 4;

for 3rd value, 𝑝 = 1, 4, 2;

for 4th value, 𝑝 = 1, 3;

for 5th value, 𝑝 = 1.

2, for 4th value, 𝑝 = 2;

for 5th value, 𝑝 = 2, 4.

3, for 5th value, 𝑝 = 3.

𝑐𝜋 (𝑤𝑝) =



0, for 1st value, 𝑝 = 2, 4;

for 2nd value, 𝑝 = 3;

for 4th value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 4;

for 2nd value, 𝑝 = 1, 2;

for 3rd value, 𝑝 = 2, 3;

for 4th value, 𝑝 = 3, 4.

2, for 1st value, 𝑝 = 3;

for 3rd value, 𝑝 = 4;

for 4th value, 𝑝 = 1, 2;

for 5th value, 𝑝 = 1, 4.

3 for 5th value, 𝑝 = 2, 3.
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𝑐𝜋 (𝑣′𝑝) =



0, for 2nd value, 𝑝 = 2;

for 3rd value, 𝑝 = 3;

for 4th value, 𝑝 = 4;

for 5th value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 2, 3, 4;

for 2nd value, 𝑝 = 1, 3, 4;

for 3rd value, 𝑝 = 1, 2, 4;

for 4th value, 𝑝 = 1, 3.

for 5th value, 𝑝 = 2, 4.

2, for 4th value, 𝑝 = 2;

for 5th value, 𝑝 = 3.

𝑐𝜋 (𝑤′
𝑝) =



0, for 1st value, 𝑝 = 2, 3;

for 2rd value, 𝑝 = 4;

for 3th value, 𝑝 = 1.

1, for 2nd value, 𝑝 = 1, 2;

for 33d value, 𝑝 = 2, 3;

for 4th value, 𝑝 = 3, 4;

for 5th value, 𝑝 = 1, 5.

2, for 1st value, 𝑝 = 1, 4.

for 2nd value, 𝑝 = 3.

for 33d value, 𝑝 = 4;

for 4th value, 𝑝 = 1, 2;

for 5th value, 𝑝 = 2, 3.

Since each vertex in 𝐵𝑀 (𝐶4 ) has a distinct color code, 𝑐 is a locating coloring.
Consequently,𝜒𝐿

(
𝐵𝑀 (𝐶4 )

)
≤ 5. Therefore, 𝜒𝐿

(
𝐵𝑀 (𝐶3 )

)
= 5.

Subcase 2.2 for odd (𝑛 > 4).
Since the barbell Rose graph 𝐵𝑀 (𝐶𝑛 ) contains the Rose graph 𝑀 (𝐶𝑛),then by Theorem 4.1 we have
𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
≥ 5.

Let 𝑐 be a vertex coloring using five colors as follows.

𝑐(𝑣𝑝) =

1, 𝑝 = 1;

2, even 𝑝;

3, odd 𝑝 > 1.

𝑐(𝑤𝑝) =

1, 𝑝 = (1, 𝑛);
2, 𝑝 = 𝑛;

4, 𝑝 = 1.

𝑐(𝑣′𝑝) =

1, 𝑝 = 𝑛;

2, odd 𝑝 > 2, 𝑝 ≠ 𝑛;

3, even 𝑝.

𝑐(𝑤′
𝑝) =


1, 𝑝 = [1, 𝑛 − 2];
2, 𝑝 = 𝑛 − 1;

5, 𝑝 = 𝑛.



Riza Sawitri, et al 119

the color codes of 𝐵𝑀 (𝐶𝑛 ) are:

𝑐Π (𝑣𝑝) =



0, for 1st value, 𝑝 = 1;

for 2nd value, even 𝑝.

for 3rd value, odd 𝑝 > 1.

1, for 1st value, 𝑝 = (1, 𝑛];
for 2nd value, odd 𝑝;

for 3rd value, even 𝑝 = 1;

for 4th value, 𝑝 = 1.

𝑝 − 1, for 4th value, 𝑝 =
(
1, 𝑛+12 + 1

]
.

𝑝 + 1, for 5th value, 𝑝 =
[
𝑛+1
2 + 1, 𝑛

]
.

𝑛 − 𝑝 + 2, for 4th value, 𝑝 =
(
𝑛+1
2 + 1, 𝑛

]
.

𝑛 − 𝑝 + 3, for 5th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑐Π (𝑤𝑝) =



0, for 1st value, 𝑝 = (1, 𝑛);
for 2nd value, 𝑝 = 𝑛.

for 4th value, 𝑝 = 1.

1, for 1st value, 𝑝 = 1, 𝑛;

for 2nd value, 𝑝 = [1, 𝑛);
for 3rd value, 𝑝 = (1, 𝑛] .

2, for 3rd value, 𝑝 = 1.

𝑝, for 4th value, 𝑝 =
(
1, 𝑛+12

]
.

𝑝 + 2, for 5th value, 𝑝 =
[
1, 𝑛+12

]
.

𝑛 − 𝑝 + 2, for 4th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑛 − 𝑝 + 3, for 5th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑐Π (𝑣′𝑝) =



0, for 1st value, 𝑝 = 𝑛;

for 2nd value, odd 𝑝, 𝑝 ≠ 𝑛.

for 3rd value, even 𝑝.

1, for 1st value, 𝑝 = [1, 𝑛);
for 2nd value, odd 𝑝 = 𝑛;

for 3rd value, even 𝑝.

𝑝 + 1 for 4th value, 𝑝 =
[
1, 𝑛+12

]
.

𝑝, for 5th value, 𝑝 =
[
1, 𝑛+12

]
.

𝑛 − 𝑝 + 3, for 4th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑐Π (𝑤′
𝑝) =



0, for 1st value, 𝑝 = [1, 𝑛 − 2];
for 2nd value, 𝑝 = 𝑛 − 1;

for 5th value, 𝑝 = 𝑛.

1, for 1st value, 𝑝 = 𝑛 − 1, 𝑛;

for 2nd value, 𝑝 = [1, 𝑛] − {𝑛 − 1};
for 3rd value, 𝑝 = [1, 𝑛).

2, for 3rd value, 𝑝 = 𝑛.

𝑝 + 2, for 4th value, 𝑝 =
[
1, 𝑛+12

]
.

𝑝 + 1, for 5th value, 𝑝 =
[
1, 𝑛−12

]
.

𝑛 − 𝑝 + 3, for 4th value, 𝑝 =
(
𝑛+1
2 , 𝑛

]
.

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛−1
2 , 𝑛

]
.

Since each vertex in 𝐵𝑀 (𝐶𝑛 ) has a distinct color code, 𝑐 is a locating coloring.
Consequently,𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
≤ 5. Therefore, 𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
= 5.

Subcase 2.3 for even (𝑛 > 4).
Since the barbell Rose graph 𝐵𝑀 (𝐶𝑛 ) contains the Rose graph 𝑀 (𝐶𝑛), then by Theorem 4.1 we have
𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
≥ 5.

Let 𝑐 be a vertex coloring using five colors as follows.

𝑐(𝑣𝑝) =
{
1, odd 𝑝;

2, even 𝑝.
𝑐(𝑤𝑝) =

{
3, 𝑝 = [1, 𝑛);
4, 𝑝 = 𝑛;

𝑐(𝑣′𝑝) =
{
1, even 𝑝;

2, odd 𝑝.
𝑐(𝑤′

𝑝) =
{
3, 𝑝 = [1, 𝑛);
5, 𝑝 = 𝑛.
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the color codes of 𝐵𝑀 (𝐶𝑛 ) are:

𝑐Π (𝑣𝑝) =



0, for 1st value, odd 𝑝;

for 2nd value, even 𝑝.

1, for 1st value, even 𝑝;

for 2nd value, odd 𝑝;

for 3rd value, even 𝑝 = [1, 𝑛];
𝑝, for 4th value, 𝑝 = 𝑝 =

[
1, 𝑛2

]
.

𝑝 + 1, for 5th value, 𝑝 =
[
1, 𝑛2 + 1

]
.

𝑛 − 𝑝 + 1, for 4th value, 𝑝 =
(
𝑛
2 , 𝑛

]
.

𝑛 − 𝑝 + 3, for 5th value, 𝑝 =
(
𝑛
2 + 1, 𝑛

]
.

𝑐Π (𝑤𝑝) =



0, for 3rd value, 𝑝 = [1, 𝑛);
for 4th value, 𝑝 = 𝑛.

1, for 1st value, 𝑝 = [1, 𝑛];
for 2nd value, 𝑝 = [1, 𝑛] .

2, for 3rd value, 𝑝 = 𝑛.

𝑝 + 1, for 4th value, 𝑝 =
[
1, 𝑛2

]
.

𝑝 + 2, for 5th value, 𝑝 =
[
1, 𝑛2

]
.

𝑛 − 𝑝 + 2, for 4th value, 𝑝 =
(
𝑛
2 , 𝑛

)
.

𝑛 − 𝑝 + 3, for 5th value, 𝑝 =
(
𝑛
2 , 𝑛

]
.

𝑐Π (𝑣′𝑝) =



0, for 1st value, even 𝑝;

for 2nd value, odd 𝑝.

1, for 1st value, odd 𝑝;

for 2nd value, even 𝑝;

for 3rd value, 𝑝 = [1, 𝑛] .
𝑝 + 1 for 4th value, 𝑝 =

[
1, 𝑛2 + 1

]
.

𝑝, for 5th value, 𝑝 =
[
1, 𝑛2

]
.

𝑛 − 𝑝 + 3, for 4th value, 𝑝 =
(
𝑛
2 + 1, 𝑛

]
.

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛
2 , 𝑛

]
.

𝑐Π (𝑤′
𝑝) =



0, for 3st value, 𝑝 = [1, 𝑛);
for 5th value, 𝑝 = 𝑛.

1, for 1st value, 𝑝 = [1, 𝑛];
for 2nd value, 𝑝 = [1, 𝑛] .

2, for 3rd value, 𝑝 = 𝑛.

𝑝 + 2, for 4th value, 𝑝 =
[
1, 𝑛2

]
.

𝑝 + 1, for 5th value, 𝑝 =
[
1, 𝑛2

]
.

𝑛 − 𝑝 + 3, for 4th value, 𝑝 =
(
𝑛
2 , 𝑛

]
.

𝑛 − 𝑝 + 1, for 5th value, 𝑝 =
(
𝑛
2 , 𝑛

)
.

Since each vertex in 𝐵𝑀 (𝐶𝑛 ) has a distinct color code, 𝑐 is a locating coloring.
Consequently,𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
≤ 5. Therefore, 𝜒𝐿

(
𝐵𝑀 (𝐶𝑛 )

)
= 5.

□

Figure 3 is an example of a minimum locating coloring of the barbell Rose graph 𝐵𝑀 (𝐶5 ) .

Figure 3. A minimum locating coloring of 𝐵𝑀 (𝐶5 )

5. Conclusions

Determining the locating chromatic number of a Rose graph and barbell Rose graph depends on
the number of vertices in its cycle. Based on the results of the discussion, it was found that the
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locating chromatic number of Rose graph for 𝑛 ∈ {3, 4} is 4 and 𝑛 ≥ 5 is 5. The same thing applied to
the locating chromatic number of barbell Rose graph, namely 𝜒𝐿

(
𝐵𝑀 (𝐶3 )

)
= 4 and 5 for 𝑛 ≥ 4.
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