Solving Irreducible Polynomials over Zp and GCD, LCM of Two Polynomials over Fn Using Python
DOI:
https://doi.org/10.29303/semeton.v1i2.227Keywords:
Reducible Polynomial, GCD, LCM, PythonAbstract
This research aims to solve the irreducible polynomial problem over finite field Zp and determine the Greatest Common Divisor (GCD) and Least Common Multiple (LCM) of two polynomials over finite field Fn using Python programming language. In the digital age, programming plays an important role in various disciplines. Python, with its simple syntax and computational libraries like SymPy, has become a top choice among the various programming languages available. Polynomials appear frequently in the computer field, especially in cryptographic algorithms, data compression, and error coding. This research utilizes Euclid's Algorithm to determine the GCD and LCM of two polynomials over a finite field Fn, as well as evaluate the irreducibility of polynomials over a finite field Zp. Determining irreducibility is very important in polynomial theory and is a challenging task if done manually. With the help of Python, this research produces a script or syntax that is able to automate the process, thus saving time and reducing complexity. The final result of this research is an effective Python script or syntax to determine the GCD and LCM of two polynomials over Fn, as well as evaluate whether a polynomial is reducible or irreducible over Zp.References
D. N. Zuraidah et al., "Menelisik Platform Digital dalam Teknologi Bahasa Pemrograman," Teknois Journal: Jurnal Ilmiah Teknologi-Informasi & Sains, vol. 11, no. 2, pp. 1-6, 2021. http://repository.uinsa.ac.id/id/eprint/1941
S. Tribethran et al., "Pelatihan Pemrograman Dasar Python Dengan Memanfaatkan ChatGPT pada SMK Methodist 2 Palembang: Pelatihan Pemrograman Dasar Menggunakan Bahasa Python Kepada Para Siswa Kelas 10 SMK Methodist 2 Palembang," Jumat Informatika: Jurnal Pengabdian Masyarakat, vol. 4, no. 2, pp. 71-79, 2023. https://doi.org/10.32764/abdimasif.v4i2.3709
H. Q. Dinh, B. T. Nguyen, A. K. Singh, and S. “Sriboonchitta, Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths Over F_(p^m )+ uF_(p^m ),” IEEE Communications Letters, vol. 22, no. 12, pp. 2400-2403, Dec. 2018. https://doi.org/10.1109/LCOMM.2018.2868637
Z. Zakirman, W. Gusta, and S. Dewimarni, "The Effectiveness of Euclid's Algorithm Method in Solving Problems about FPB," Jurnal Cendekia: Jurnal Pendidikan Matematika, vol. 6, no. 2, pp. 1603-1613, 2022. https://doi.org/10.31004/cendekia.v6i2.1331
J. L. Butar-butar and F. Sinuhaji, “Faktorisasi Polinomial Square-Free dan bukan Square-Free atas Lapangan Hingga Zp,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 3, no. 2, pp. 132-142, 2019. https://doi.org/10.31764/jtam.v3i2.1079
R. G. Nascimento, K. Fricke, and F. A. Viana, "A Tutorial on Solving Ordinary Differential Equations Using Python and Hybrid Physics-Informed Neural Network," Engineering Applications of Artificial Intelligence, vol. 96, no. 103996, 2020. https://doi.org/10.1016/j.engappai.2020.103996
C. Rackauckas, "A Comparison Between Differential Equation Solver Suites in Matlab, R, Julia, Python, C, Mathematica, Maple, and Fortran," Authorea Preprints, 2023.
M. Jamaluddin, Algoritma dan Pemrograman Komputer dengan Python, 2021.
M. B. Tamam, "The Introduction to Python Programming Language for Students at Mtsn 4 Pandeglang School," Journal of Community Service and Engagement, vol. 2, no. 6, pp. 35-42, 2022. https://doi.org/10.9999/jocosae.v2i6.57
A. Meurer et al., "SymPy: Symbolic Computing in Python," PeerJ Computer Science, vol. 3, no. e103, 2017.
S. B. Nabijonovich and G. Najmiddin, "OPTIMIZING PYQT5 DEVELOPMENT WITH QT DESIGNER," Web of Teachers: Inderscience Research, vol. 2, no. 4, pp. 254-259, 2024. http://webofjournals.com/index.php/1/article/view/1224
R. Munir, Metode Numerik Revisi Kedua. Bandung, Indonesia: Informatika Bandung, 2008.
M. D. Raisinghania and R. S. Aggarwal, Modern Algebra. Raw Negar, New Delhi, India: Chad & Company LTD, 1980.
J. B. Fraleigh and V. Katz, A First Course in Abstract Algebra. Pearson, 2004.
S. Ling and C. Xing, Coding Theory: A First Course. Cambridge University Press, 2004.
K. H. Rosen, Elementary Number Theory. London, U.K.: Pearson Education, 2011.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.