Design of Facial Expressions Recognition for Academic Presence By Using Backpropagation Artificial Neural Networks Based on Principal Components Analysis

Authors

  • Setiawati Setiawati Department of Mathematics, University of Mataram
  • Uswatun Az Zahro Department of Mathematics, University of Mataram
  • Nuzla Af'idatur Robbaniyyah Department of Mathematics, University of Mataram
  • Ivan Luthfi Ihwani Department of Mathematics, National Central University and Department of Mathematics, Universitas Gadjah Mada

DOI:

https://doi.org/10.29303/semeton.v1i2.240

Keywords:

artificial neural networks, backpropagation, principal component analysis

Abstract

There are 4,004 universities in Indonesia where each university needs data to find out student activities, one of which is through attendance. Some universities in Indonesia still use manual attendance systems and attendance systems through the website. This system has several obstacles that require solutions. Therefore, a more concise system is needed to assist students in filling in the attendance. This research aims to make a design to make academic presence for students by using neural network. There are many methods that can be used to create this system including using Principal Component Analysis (PCA) based on Backlpropagation Neural Network (BNN) because it can help the system perform faster and more accurately without losing important information. After carrying out a series of steps of algorithm designed for student attendance, we get the recognition of facial image expressions by using ANN Backpropagation  and recognition of facial image expression with PCA.

References

Aini, N., & Irmawati, I. (2017). Implementasi Metode Fisherface pada Presensi Wajah Karyawan Studi Kasus PT. Illuminati Metamorphosis Makassar. SEMNASTEKNOMEDIA ONLINE, 5(1), 1-2. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1606

F. Mahmud, S. Afroge, M. A. Mamun and A. Matin, "PCA and back-propagation neural network based face recognition system," 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2015, pp. 582-587. https://doi.org/10.1109/ICCITechn.2015.7488138

Huang, Q., Limin, C., (2019). Design and Application of Face Recognition Algorithm Based on Improved Backpropagation Neural Network. Academic Journal. https://doi.org/10.18280/ria.330105

Win, E. A. (2021). Model Pengenalan Wajah dengan Principal Components Analysis dalam Perancangan Perangkat Lunak. Jurnal Global Multicom Tifo, 1(1), 35-39. https://dx.doi.org/10.9744/informatika.2.2.pp.%2057-61

Abuzneid, M. A., & Mahmood, A. (2018). Enhanced human face recognition using LBPH descriptor, multi-KNN, and back-propagation neural network. IEEE access, 6, 20641-20651. https://doi.org/10.1109/ACCESS.2018.2825310

Hijriah, A., Fauziyah, M., & Dewatama, D. (2020). Implementasi JST Backpropagation pada Face Recognition untuk Percepatan Proses Sistem Presensi. Jurnal Elkolind: Jurnal Elektronika dan Otomasi Industri, 1(1), 14-22. http://dx.doi.org/10.33795/elkolind.v1i1.29

Kashem, M. A., Akhter, M. N., Ahmed, S., & Alam, M. M. (2021). Face recognition system based on principal component analysis (PCA) with back propagation neural networks (BPNN). Canadian Journal on Image Processing and Computer Vision, 2(4), 36-45. https://www.ijser.org/viewPaperDetail.aspx?JUN1119

Cilimkovic, M. (2015). Neural Networks and Back Propagation Algorithm. Institute of Technology Blanchardstown. https://api.semanticscholar.org/CorpusID:18592533

Frenza, D., & Mukhaiyar, R. (2021). Aplikasi Pengenalan Wajah dengan Metode Adaptive Resonance Theory (ART). Ranah Research: Journal of Multidisciplinary Research and Development, 3(3), 147-153. https://doi.org/10.38035/rrj.v3i3.392

Octariadi, B. C. (2020). Pengenalan Pola Tanda Tangan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal Teknoinfo, 14(1), 15-21. https://doi.org/10.33365/jti.v14i1.462

Kholis, I. & Rofii, A. (2017). Analisis Variasi Parameter Backpropagation Artificial Neural Network Pada Sistem Pengenalan Wajah Berbasis Principal Component Analysis. Jurnal Kajian Teknik Elektro, 2(1), 1-12. https://doi.org/10.52447/jkte.v2i1.548

Downloads

Published

2024-10-15

How to Cite

Setiawati, S., Zahro, U. A., Robbaniyyah, N. A., & Ihwani, I. L. (2024). Design of Facial Expressions Recognition for Academic Presence By Using Backpropagation Artificial Neural Networks Based on Principal Components Analysis. Semeton Mathematics Journal, 1(2), 97–104. https://doi.org/10.29303/semeton.v1i2.240

Issue

Section

Articles