Design of Facial Expressions Recognition for Academic Presence By Using Backpropagation Artificial Neural Networks Based on Principal Components Analysis
DOI:
https://doi.org/10.29303/semeton.v1i2.240Keywords:
artificial neural networks, backpropagation, principal component analysisAbstract
There are 4,004 universities in Indonesia where each university needs data to find out student activities, one of which is through attendance. Some universities in Indonesia still use manual attendance systems and attendance systems through the website. This system has several obstacles that require solutions. Therefore, a more concise system is needed to assist students in filling in the attendance. This research aims to make a design to make academic presence for students by using neural network. There are many methods that can be used to create this system including using Principal Component Analysis (PCA) based on Backlpropagation Neural Network (BNN) because it can help the system perform faster and more accurately without losing important information. After carrying out a series of steps of algorithm designed for student attendance, we get the recognition of facial image expressions by using ANN Backpropagation and recognition of facial image expression with PCA.References
Aini, N., & Irmawati, I. (2017). Implementasi Metode Fisherface pada Presensi Wajah Karyawan Studi Kasus PT. Illuminati Metamorphosis Makassar. SEMNASTEKNOMEDIA ONLINE, 5(1), 1-2. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1606
F. Mahmud, S. Afroge, M. A. Mamun and A. Matin, "PCA and back-propagation neural network based face recognition system," 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2015, pp. 582-587. https://doi.org/10.1109/ICCITechn.2015.7488138
Huang, Q., Limin, C., (2019). Design and Application of Face Recognition Algorithm Based on Improved Backpropagation Neural Network. Academic Journal. https://doi.org/10.18280/ria.330105
Win, E. A. (2021). Model Pengenalan Wajah dengan Principal Components Analysis dalam Perancangan Perangkat Lunak. Jurnal Global Multicom Tifo, 1(1), 35-39. https://dx.doi.org/10.9744/informatika.2.2.pp.%2057-61
Abuzneid, M. A., & Mahmood, A. (2018). Enhanced human face recognition using LBPH descriptor, multi-KNN, and back-propagation neural network. IEEE access, 6, 20641-20651. https://doi.org/10.1109/ACCESS.2018.2825310
Hijriah, A., Fauziyah, M., & Dewatama, D. (2020). Implementasi JST Backpropagation pada Face Recognition untuk Percepatan Proses Sistem Presensi. Jurnal Elkolind: Jurnal Elektronika dan Otomasi Industri, 1(1), 14-22. http://dx.doi.org/10.33795/elkolind.v1i1.29
Kashem, M. A., Akhter, M. N., Ahmed, S., & Alam, M. M. (2021). Face recognition system based on principal component analysis (PCA) with back propagation neural networks (BPNN). Canadian Journal on Image Processing and Computer Vision, 2(4), 36-45. https://www.ijser.org/viewPaperDetail.aspx?JUN1119
Cilimkovic, M. (2015). Neural Networks and Back Propagation Algorithm. Institute of Technology Blanchardstown. https://api.semanticscholar.org/CorpusID:18592533
Frenza, D., & Mukhaiyar, R. (2021). Aplikasi Pengenalan Wajah dengan Metode Adaptive Resonance Theory (ART). Ranah Research: Journal of Multidisciplinary Research and Development, 3(3), 147-153. https://doi.org/10.38035/rrj.v3i3.392
Octariadi, B. C. (2020). Pengenalan Pola Tanda Tangan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal Teknoinfo, 14(1), 15-21. https://doi.org/10.33365/jti.v14i1.462
Kholis, I. & Rofii, A. (2017). Analisis Variasi Parameter Backpropagation Artificial Neural Network Pada Sistem Pengenalan Wajah Berbasis Principal Component Analysis. Jurnal Kajian Teknik Elektro, 2(1), 1-12. https://doi.org/10.52447/jkte.v2i1.548
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.