Modeling Maternal Mortality Rate (MMR) In Indonesia Using Mixed Geographically Weighted Regression (MGWR)

Authors

  • Tamsilul Lawwamah Universitas Mataram
  • Lisa Harsyiah FMIPA Universitas Mataram
  • Qurratul Aini Universitas Mataram

DOI:

https://doi.org/10.29303/semeton.v1i2.241

Keywords:

Adaptive Gaussian Kernel, AIC, Angka Kematian ibu (AKI), Mixed Geographycally Weighted Regression (MGWR).

Abstract

Maternal Mortality Rate (MMR) is on of the targets for a  achieving the Sustainable Development Goals (SDGs). The aim of this research is to find the right model for estimating MMR and to look at the factors that influence MMR in Indonesia. Estimation were carried out using the Mixed Geographically Weigthed Regression (MGWR) model. The MGWR model is a combination of GWR and linear regression with variables that  having influence locally and some globally. The results obtained are that the MGWR model is superior the GWR model, because  the smallest AIC value for MGWR is 463,0564. Factors that have significant influence using the adaptive Gaussian kernel weighting are postpartum mothers (x4) , postpartum mothers receiving vitamin A (x5), giving Fe3 tablets to pregnant women (x6) ,  and handling obstetric complications (x7).

References

P. K. Indonesia, Profil Kesehatan Indonesia. Kementerian Kesehatan Republik Indonesia, Jakarta. 2017.

H. Yasin, “Pemilihan Variabel Pada Model Geographically Weighted Regression,” Media Stat., vol. 4, no. 2, pp. 63–72, 2011, doi: https://doi.org/10.14710/medstat.4.2.63-72.

A. R. Hakim, H. Yasin, and S. Suparti, “Pemodelan Persentase Penduduk Miskin Di Kabupaten Dan Kota Di Jawa Tengah Dengan Pendekatan Mixed Geographically Weighted Regression,” J. Gaussian, vol. 3, no. 4, pp. 575–584, 2015, doi: https://doi.org/10.14710/j.gauss.3.4.575-584.

G. D. Ahadi and N. N. L. E. Zain, “Pemeriksaan Uji Kenormalan dengan Kolmogorov-Smirnov, Anderson-Darling dan Shapiro-Wilk,” Eig. Math. J., vol. 6, no. 1, pp. 11–19, 2023, doi: https://doi.org/10.29303/emj.v6i1.131.

M. Marizal and H. Atiqah, “Pemodelan Indeks Pembangunan Manusia di Indonesia dengan Geographically Weighted Regression (GWR),” J. Sains Mat. dan Stat., vol. 8, no. 2, p. 133, 2022, doi: https://doi.org/10.24014/jsms.v8i2.17886.

R. F. Ananda, L. Harsyiah, and M. R. Alfian, “Classification Of Perceptions Of The Covid-19 Vaccine Using Multivariate Adaptive Regression Spline,” J. Varian, vol. 6, no. 2, pp. 137–148, 2023, doi: https://doi.org/10.30812/varian.v6i2.2639.

N. F. Apriyani, D. Yuniarti, D. Memi, and N. Hayati, “The Model of Mixed Geographically Weighted Regression (MGWR) (Case Study: The Number of Diarrhea Sufferers in East Kalimantan Province on 2015),” J. EKSPONENSIAL, vol. 9, no. 1, pp. 59–66, 2018, doi: https://doi.org/10.30872/eksponensial.v9i1.

Published

2024-10-14

How to Cite

Lawwamah, T., Harsyiah, L., & Aini, Q. (2024). Modeling Maternal Mortality Rate (MMR) In Indonesia Using Mixed Geographically Weighted Regression (MGWR). Semeton Mathematics Journal, 1(2), 78–89. https://doi.org/10.29303/semeton.v1i2.241

Issue

Section

Articles