Eksplorasi Modul Noetherian
DOI:
https://doi.org/10.29303/smj.v2i1.263Keywords:
Noetherian modules, ascending chain condition, ring theory, homological algebra, algebraic topologyAbstract
Noetherian Modules are a fundamental concept in algebra, providing a structured framework for studying algebraic structures. These modules satisfy the ascending chain condition (ACC), which ensures that every ascending chain of submodules terminates after a finite number of steps. This article explores the definition, key properties, and applications of Noetherian modules in ring theory, homological algebra, and algebraic topology. Through this discussion, it is demonstrated that Noetherian Modules play a crucial role in analyzing ideal structures and more complex algebraic representations. The article also provides concrete examples to illustrate the properties and significance of Noetherian modules across various branches of algebra.References
J. Adedoyin, “Noetherian rings and modules,” A Primer of Algebraic D-Modules, no. November 2023, pp. 65–73, 2010, doi: https://doi.org/10.1017/cbo9780511623653.010.
I. G. A. W. Wardhana, F. Maulana, and N. H. Sarmin, “On the uniqueness of almost prime submodules within cyclic uniserial modules,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 28, no. 1, pp. 239–247, Feb. 2025, doi: https://doi.org/10.47974/JDMSC-2194.
I. G. A. W. Wardhana and F. Maulana, “Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial,” vol. 7, pp. 9–17, 2021, https://doi.org/10.52166/ujmc.v7i2.2674.
M. F. Atiyah and I. G. Macdonald, “Introduction to Commutative Algebra,” Introduction to Commutative Algebra, pp. 1–128, 2018, doi: https://doi.org/10.1201/9780429493621.
A. Banerjee, “Noetherian Rings—Dimension and Chain Conditions,” American Journal of Undergraduate Research, vol. 4, no. 3, pp. 27–34, 2005, doi: https://doi.org/10.33697/ajur.2005.023.
S. Prakash and A. K. Chaturvedi, “On some classes of modules related to chain conditions,” Palestine Journal of Mathematics, vol. 11, no. Special Issue II, pp. 108–112, 2022, https://pjm.ppu.edu/sites/default/files/papers/PJM_Speciall_Issue_II_March_2022_108_to_112.pdf.
T. Singh, A. U. Ansari, and S. Datt Kumar, “Surveys in Mathematics and its Applications S-NOETHERIAN RINGS, MODULES AND THEIR GENERALIZATIONS,” vol. 18, pp. 163–182, 2023, https://www.utgjiu.ro/math/sma/v18/a18_13.html.
E. Matlis, “Injective Modules Over Noetherian Rings Injective Modules Over Noetherian Rings,” vol. 8, no. 3, 1958.
J. Cuadra, C. Nǎstǎsescu, and F. Van Oystaeyen, “Graded almost noetherian rings and applications to coalgebras,” Journal of Algebra, vol. 256, no. 1, pp. 97–110, 2002, doi: https://doi.org/10.1016/S0021-8693(02)00099-6.
S. MARTASARI, I. MADE ARNAWA, and N. NOLIZA BAKAR, “Sifat-Sifat Modul Noetherian,” Jurnal Matematika UNAND, vol. 9, no. 2, p. 121, 2020, doi: https://doi.org/10.25077/jmu.9.2.121-129.2020.
A. Wayne, “Noetherian modules and noetherian injective rings,” Tohoku Mathematical Journal, vol. 17, no. 2, pp. 130–138, 1965, doi: https://doi.org/10.2748/tmj/1178243578.
A. Anebri, N. Mahdou, and Ü. Tekir, “Commutative rings and modules that are r-noetherian,” Bulletin of the Korean Mathematical Society, vol. 58, no. 5, pp. 1221–1233, 2021, doi: https://doi.org/10.4134/BKMS.b200881.
A. Faisol, B. Surodjo, and S. Wahyuni, “The Relation between Almost Noetherian Module, Almost Finitely Generated Module and T-Noetherian Module,” Journal of Physics: Conference Series, vol. 1306, no. 1, 2019, doi: https://doi.org/10.1088/1742-6596/1306/1/012001.
Q. A. Az-zakiyah and I. Nisfulaila, “Sifat Rantai Naik pada Modul r-Noetherian Serta Keterkaitan Modul r- Noetherian dengan Modul Noetherian dan Modul Hampir Noetherian,” vol. 3, no. September 2023, pp. 289–295, 2024, http://etheses.uin-malang.ac.id/65093.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.