Sejarah dan Definisi Klasik Fungsi Konveks
DOI:
https://doi.org/10.29303/smj.v2i1.282Keywords:
convexity, Jensen’s inequality, optimiztion theoryAbstract
The concept of convexity is a fundamental pillar in optimization theory and inequality analysis. This article aims to review the history and classical definition of convex functions through a literature-based approach. The literature reviewed includes works by Jensen [1], Rockafellar [2], Boyd & Vandenberghe [3], and Niculescu & Persson [4]. The analysis highlights the connection between the geometric definition of convex functions and Jensen's inequality, which demonstrates the consistency of inequality structures in both deterministic and probabilistic contexts. This study emphasizes that Jensen's inequality not only extends the concept of convex functions in probability theory but also strengthens the understanding of its geometric definition in classical analysis. This article is intended to serve as an introduction for students and researchers wishing to comprehend the foundational structure of convexity in modern mathematical theory.References
J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,” Acta Mathematica, vol. 30, hlm. 175–193, 1906, doi: 10.1007/BF02418571.
R. T. Rockafellar, Convex Analysis. Princeton, New Jersey, Amerika Serikat: Princeton University Press, 1970.
S. P. Boyd dan L. Vandenberghe, Convex optimization. Cambridge, UK ; New York: Cambridge University Press, 2004.
C. P. Niculescu dan L.-E. Persson, Convex Functions and Their Applications: A Contemporary Approach. dalam CMS Books in Mathematics. Springer-Verlag, New York, 2006.
R. Correa, A. Hantoute, dan M. A. López, Fundamentals of Convex Analysis and Optimization: A Supremum Function Approach. dalam Springer Series in Operations Research and Financial Engineering. Cham: Springer International Publishing, 2023. doi: 10.1007/978-3-031-29551-5.
A. Ben-Tal dan A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898718829.
P. Dvurechensky, M. Staudigl, dan S. Shtern, “First-Order Methods for Convex Optimization,” 6 Januari 2021, arXiv: arXiv:2101.00935. doi: 10.48550/arXiv.2101.00935.
J. Gow, A short history of Greek mathematics, [Nachdruck der Ausg.] Cambridge 1884. dalam Cambridge library collection Classics. Cambridge: Cambridge University Press, 2010.
A. Rahmah, “KEKONVEKSAN SUATU FUNGSI PADA RUANG METRIK KONVEKS,” vol. 7, 2019.
M. Ahookhosh dan A. Neumaier, “High-dimensional convex optimization via optimal affine subgradient algorithms”.
P. M. Gruber, Convex and discrete geometry. dalam Grundlehren der mathematischen Wissenschaften, no. v. 336. Berlin ; New York: Springer, 2007.
T. L. Heath, A History of Greek Mathematics (Volume 1 & 2). Oxford, Inggris: Clarendon Press, 1921.
R. G. Bartle, Introduction to Real Analysis, Fourth Edition, Fourth. United States of America: John Wiley & Sons, Inc., 2011.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.