Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-06-30

Rice Production Forecasting using Exponential Smoothing Method

UIN Alauddin Makassar
Agricultural Exponential Smoothing Forecasting Rice Production

Abstract

Exponential smoothing is a forecasting method with data that tends to fluctuate. Rice production is one of the data with these properties. This study discusses the agricultural production, the variable used to predict the level of rice production in Tanete Rilau District, Barru Regency . This study aims to predict the total production of rice plants from 2021 to 2025. The analysis results show that the forecast values for the entire production of rice plants from 2021 to 2025 are 24016.6, 24613.14, 25018.36, 25342.54, and 25601.88, respectively. It can be seen that rice production forecasting using the exponential smoothing method fluctuates yearly.

References

  1. Aden, A. (2020). Forecasting The Eksponential Smoothing Methods. Banten: Unpam Press.
  2. Fitria, I., Alam, M. S. K., & Subchan, S. (2017). Perbandingan Metode ARIMA dan Exponential Smoothing pada Peramalan Harga Saham LQ45 Tiga Perusahaan dengan Nilai Earning Per Share (EPS) Tertinggi. Limits: Journal of Mathematics and Its Applications, 14(2), 113-125.
  3. Hakimah, M., Rahmawati, W. M., & Afandi, A. Y. (2020). Pengukuran Kinerja Metode Peramalan Tipe Exponential Smoothing Dalam Parameter Terbaiknya. Network Engineering Research Operation, 5(1), 44-50.
  4. Hudiyanti, C. V., Bachtiar, F. A., & Setiawan, B. D. (2019). Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Vol 3. No 3.
  5. Laksmana, R. D., Santoso, E., & Rahayudi, B. (2019). Prediksi Penjualan Roti Menggunakan Metode Exponential Smoothing (Studi Kasus: Harum Bakery). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol 3. No 5.
  6. Maricar, M. A. (2019). Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan xyz. Jurnal Sistem dan Informatika (JSI), 13(2), 36-45.
  7. Pianda, D. (2018). Optimasi perencanaan produksi pada kombinasi produk dengan metode linear programming. Jawa Barat: CV Jejak (Jejak Publisher).
  8. Pujiati, E., Yuniarti, D., & Goejantoro, R. (2017). Peramalan Dengan Menggunakan Metode Double Exponential Smoothing Dari Brown. Jurnal Eksponensial, 7(1), 33-40.
  9. Subagyo, P., & Ps, D. (2005). Statistika Induktif Edisi 5. Yogyakarta: BPFE.
  10. Supriyanto, B. (2012). Penentuan Musim Tanam dan Waktu Tanam Padi Sawah Berdasarkan Akumulasi Curah Hujan Sepuluh Hari Hitung Maju dan Mundur di Kelurahan Lempake Kota Samarinda. Ziraa'ah Majalah Ilmiah Pertanian, 35(3), 182-189.