Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2018-12-28

Usulan Rute Optimal Distribusi Sampah Shift I Kota Sumbawa Besar Menggunakan Metode GVRP

Universitas Teknologi Sumbawa
##plugins.generic.jatsParser.article.authorBio##
×

Koko Hermanto

Universitas Teknologi SUmbawa, Fakultas Teknik, Program studi Teknik Industri
Universitas Teknologi Sumbawa

Abstract

Generalized vehicle routing problem (GVRP), for each vertex of the graph is partitioned into vertex sets and called groups, it will be determined the optimal route given to each set group includes exactly one vertex of each group. Furthermore, the cluster generalized vehicle routing problem (CGVRP) was introduced which aims to determine the optimal route for each vertex for each cluster. The optimal route can be solved using the Djikstra Algorithm. The distribution of waste in the city of Sumbawa Besar is still considered to be less than optimal, so this system can be implemented by making direct connections between each polling station. This system produces the shortest route, travel details, distance between polling stations and travel costs.

References

  1. Dantzig, G., dan Ramser, J. The truk dispatching problem. Management Science,(1959), 6:80–91.
  2. Fauzi, Imron 2011, Penggunaan Algoritma Dijkstra Dalam Pencarian Rute Tercepat Dan Rute Terpendek (Studi Kasus Pada Jalan Raya antara Wilayah Blok M dan Kota).
  3. Gendreau, Michel. Dkk. 2010. A Tabu Search Heuristic for the Vehicle Routing Problem. Jstor. Management Science, Vol. 40, No. 10 (Oct., 1994), pp. 1276-1290.
  4. Ghiani, G., dan Improta, G. An efficient transformation of the generalized vehicle routing problem, Eur. J. Oper. Res. 122 (2000) 11–17.
  5. Siang, Jek Jong. 2014. Riset Operasi dalam Pendekatan Algoritmis Edisi 2. Yogyakarta: ANDI.
  6. Laporte, G., dan Palekar, U. Some applications of the clustered traveling salesman problem, J. Oper. Res. Soc. 53 (2002) 972–976.
  7. P. C. Pop. 2007. New Integer Programming Formulations of the Generalized Travelling Salesman Problem. American Journal of Applied Sciences 4 (11): 932-937, 2007, ISSN 1546-9239
  8. ______. 2012. Generalized Network Design Problems Modeling and Optimization. Boston: de Gruyter.
  9. ______., Kara, Imdat., dan A., H., Marc. 2011. New mathematical models of the generalized vehicle routing problem and extensions. :Elsevier. Applied Mathematical Modelling 36(2012) 97–107
  10. Susanna S. 2012. Discrete Mathematics with Application, 4th Edition. Boston, Amerika Serikat: DePaul University.