Nowcasting of Indonesia's Gross Domestic Product Using Mixed Sampling Data Regression and Google Trends Data
DOI:
https://doi.org/10.29303/emj.v7i2.187Keywords:
COVID-19, GDP, Google Trends, nowcasting, MIDASAbstract
This study aims to compare the results of the GDP nowcasting of the accommodation and food service activities sector without and with the pandemic time using the MIDAS method. The MIDAS method is an econometric approach used to predict economic development using real-time available high-level and low-frequency data. In this study, Google Trend acts as a predictor variable consisting of 16 search categories which are then reduced by Principal Component Analysis, resulting in several principal components. For GDP data, the data period collected is Quarter I 2010 to Quarter I 2023. This period will later be partitioned into the period before the COVID-19 pandemic, namely Quarter I 2010 to Quarter IV 2019 and a combined period, namely Quarter I 2010 to Quarter I of 2023. This partition was carried out to see the performance and sensitivity of the model before and after the shock due to the COVID-19 pandemic. From the models that have been made, nowcasting is carried out and it is found that the RMSE and MAE values for the pre-pandemic model are smaller than the combined model. The RMSE values for each of the pre-pandemic and combined models were 0.005753 and 0.056032 and the MAE values were 0.00359 and 0.048976 for the pre-pandemic and combined models. However, from this study it is not advisable to make predictions on the nominal GDP of the accommodation and food service activities sector because the results of the nowcasting predictions are still far from the actual value, but can be a reference if you want to predict the growth direction of the accommodation and food service activities sector.References
Aastveit, KA, Gerdrup, KR, Jore, AS, & Thorsrud, LA (2014). Nowcasting GDP in real time: A density combination approach. Journal of Business & Economic Statistics, 32(1), 48-68. doi: https://doi.org/10.1080/07350015.2013.844155
Ahmed, WS, Sheikh, J., Ur-Rehman, K., Shad, SA, & Butt, FS (2020). New continuum of stochastic static forecasting model for mutual funds at investment policy level. Chaos, Solitons & Fractals, 132, 109562. doi: https://doi.org/10.1016/j.chaos.2019.109562
Banbura, M., Giannone, D., & Reichlin, L. (2010). Nowcasting. https://ideas.repec.org/p/ecb/ecbwps/20101275.html
Banbura, M., Giannone, D., Modugno, M., & Reichlin, L. (2013). Now-casting and the real-time data flow (1564). European Central Bank. doi: https://doi.org/10.1016/B978-0-444-53683-9.00004-9
Box, GE, Jenkins, GM, Reinsel, GC, & Ljung, GM (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Bzdok, D., & Yeo, BTT (2017). Inference in the age of big data: Future perspectives on neuroscience. doi: https://doi.org/10.1016/j.neuroimage.2017.04.061
Claudio, JC, Heinisch, K., & Holtemöller, O. (2020). Nowcasting East German GDP growth: a MIDAS approach. Empirical Economics, 58(1), 29–54. doi: https://doi.org/10.1007/s00181-019-01810-5
Efendy, F., Huriyati , R., Disman , D., & Sultan, MA (2021). Using Google Trends In Content Marketing Strategy Planning for Increasing Competitiveness _ Perpetrator Business in the Internet World. National Seminar: Innovation & Adoption Technology, 2(2), 192-200.
Ghysels, E., Clara, PS, & Valkanov, R. (2004). The MIDAS Touch: Mixed Data Sampling Regression Models (2nd ed.). University of North Carolina and CIRANO. https://ideas.repec.org/p/cir/cirwor/2004s-20.html
Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: the real-time informational content of ` macroeconomic data. Monetary Journal Economics, 55, p. 665–676. doi: https://doi.org/10.1016/j.jmoneco.2008.05.010
Gil, M., Leiva -Leon, D., Pérez, JJ, & Urtasun, A. (2019). An application of dynamic factor models to nowcast regional economic activity in Spain. Banco de Espana Occasional Pape, (1904). doi: https://dx.doi.org/10.2139/ssrn.3349124
Ghysels, E., Sinko, A., & Valkanov , R. (2007). MIDAS regressions: Further results and new directions. Econometric reviews, 26(1), 53-90. doi: https://doi.org/10.1080/07474930600972467
Hanoatubun, S. (2020). Impact of Covid-19 on Indonesian Economy. EduPsyCouns: Journal of Education, Psychology and Counseling, 2 (1), 146-153. Retrieved from https://ummaspul.e-journal.id/Edupsycouns/article/view/423
Havranek, T., & Zeynalov , A. (2021). Forecasting tourist arrivals: Google Trends meets mixed-frequency data. Tourism Economics, 27(1), 129-148. doi: https://doi.org/10.1177/1354816619879584
Hawari, R., & Kartiasih, F. (2017). Kajian Aktivitas Ekonomi Luar Negeri Indonesia Terhadap Pertumbuhan Ekonomi Indonesia Periode 1998-2014. Media Statistika, 9(2), 119. doi: https://doi.org/10.14710/medstat.9.2.119-132
Human, N. (n.d.). Principal component analysis (PCA). RPubs https://rpubs.com/nadhifanhf/principal-component-analysis
Hyndman, RJ, & Athanasopoulos , G. (2018). Forecasting Principles and Practice (2nd ed.). OTexts. https://otexts.com/fpp2/index.html
Indonesia, S. Hotel and Accommodation Statistics Others in Indonesia 2019. Statistics Indonesia.
Indonesia, S. Hotel and Accommodation Statistics Others in Indonesia 2020. Statistics Indonesia.
Indonesia, S. Hotel and Accommodation Statistics Others in Indonesia 2021. Statistics Indonesia.
Kartiasih, F. (2019). Dampak Infrastruktur Transportasi Terhadap Pertumbuhan Ekonomi Di Indonesia Menggunakan Regresi Data Panel. Jurnal Ilmiah Ekonomi Dan Bisnis, 16(1), 67–77. https://doi.org/10.31849/jieb.v16i1.2306
Kuzin, V., Marcellino, M., & Schumacher, C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, 27(2), 529-542. doi: https://doi.org/10.1016/j.ijforecast.2010.02.006
Laine, OM, & Lindblad, A. (2021). Nowcasting Finnish GDP growth using financial variables: A MIDAS approach. Journal of the Finnish Economic Association, 2(1), 74-108. https://ssrn.com/abstract=3973878
Ma'Arif, S. (2019). Growth Nowcasting Product Domestic Indonesian Gross Using Dynamic Factor Model [Master's thesis].
Manalu, EP, Muditomo , A., Adriana, D., & Trisnowati , Y. (2020, August). Role of information technology for successful responses to Covid-19 pandemic. In 2020 international conference on information management and technology ( ICIMTech ) (pp. 415-420). IEEE. doi: https://doi.org/10.1109/ICIMTech50083.2020.9211290
Mariana. (2013). Analysis Main Components. Journal Mathematics and Learning, 2(2), 99-114.
Mariano, RS, & Murasawa, Y. (2003). A new coincident index of business cycles based on monthly and quarterly. Journal of Applied Econometrics, 4(18), p. 427-443. doi: https://doi.org/10.1002/jae.695
Mariano, RS, & Murasawa Y. (2010). A Coincident Index, Common Factors, and Monthly Real GDP. Oxford Bulletin of Economics and Statistics, 1(72), pp 27-46. doi: https://doi.org/10.1111/j.1468-0084.2009.00567.x
Meiryan. (2021, August 6). Understanding the autocorrelation test in the regression model. Accounting. https://accounting.binus.ac.id/2021/08/06/memahami-uji-autocorelasi-dalam-model-regresi/
Nasution, DAD, Erlina , E., & Muda, I. (2020). Impact the Covid-19 pandemic against Indonesian economy. Journal Benefita, 5 (2), 212-224. doi: http://doi.org/10.22216/jbe.v5i2.5313
Parigi, G., & Schlitzer G. (1995). Quarterly Forecast of The Italian Business Cycle by Means of Monthly Economic. Journal of Forecasting, 14, p. 117-141. doi: https://doi.org/10.1002/for.3980140205
Paludi, S. (2022). a year The Covid-19 Pandemic and Its Impact To Industry Indonesian Tourism. Equilibrium: Journal Education and Economics Research, 19 (01), 49-60. doi: https://doi.org/10.25134/equi.v19i01.4337
Purnaningrum1, E., & Ariqoh, I. (2019). Google Trends Analytics in Field Tourism. Economic Magazine, 24(2), 232-243. doi: https://doi.org/10.36456/majeko.vol24.no2.a2069
Schumacher, C. (2016). A comparison of MIDAS and bridge equations. International Journal of Forecasting, 32(2), 257-270. doi: https://doi.org/10.1016/j.ijforecast.2015.07.004
Rahayu, A. (2021, November 30). Heteroscedasticity and Gamma Regression. Binus University Malang. https://binus.ac.id/malang/2021/11/heteroskedastisitas-dan-regresi-gamma/#:~:text=Heteroskedastisitas%20merupakan%20false%20one%20factor,(coefficient)%20regression%20will%20disturb
Ringo, J., & Monika, A. (2021). Dynamic Factor Model Application for Nowcasting Regional Economic Growth Using Google Trends Data in Indonesia. Official Statistics National Seminar, 2021 (1), 157-165. doi: https://doi.org/10.34123/semnasoffstat.v2021i1.806
Rosita, R. (2020). Influence Covid-19 pandemic against MSMEs in Indonesia. Journal Lantern Business, 9 (2), 109-120. doi: https://doi.org/10.34127/jrlab.v9i2.380
Viceira, LM (2012). Bond risk, bond return volatility, and the term structure of interest rates. International Journal of Forecasting, 28(1), 97–117. doi: https://doi.org/10.1016/j.ijforecast.2011.02.018
Vollaro, M., Raggi, M., & Viaggi , D. (2021). Public R&D; and European agriculture: impact on productivity and returns on R&D; expenditures. Bio-based and Applied Economics Journal, 10 (1050-2021-1257), 73-86. doi: http://dx.doi.org/10.22004/ag.econ.312984
Willmott, CJ, & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82. doi: https://doi.org/10.3354/cr030079
Woloszko, N. (2020). Activity tracking in real time with Google Trends.
Xu, Q., Bo, Z., Jiang, C., & Liu, Y. (2019). Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility. Knowledge-Based Systems, 166, 170-185. doi: https://doi.org/10.1016/j.knosys.2018.12.025
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in the Eigen Mathematics Journal will be available for free reading and downloading. The license applied to this journal is Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA).