Mathematical Model of Differential Equations to Population Growth Models with Limited Growth in West Nusa Tenggara Province
DOI:
https://doi.org/10.29303/emj.v7i2.223Keywords:
population growth, West nusa Tenggara Province, Malthusian model, logistic modelAbstract
Differential equations are often a topic in the field of mathematics which has many applications in mathematical modeling, one of which is population growth. Research on population growth is of course important for an area because the results of this research can be used in issuing policies such as maintaining the availability of agricultural land, places to live, and many others. In this study, the mathematical model of differential equations was used to find a population growth model for the West Nusa Tenggara Province, then the model was verified and calculations were carried out using the Mathematica software. Then a model is generated with the equation (𝑡) = 3504006 𝑒0,012(𝑡−1993) which results in a calculation that the population of NTB will continue to grow so that it is necessary to verify the model which produces a logistics growth model.References
Giordano, F. R., Fox, W. P., Horton, S. B. 2014. A First Course in Mathematical Modeling 5th Edition. Brooks/Cole: Boston.
Indrianawati, Mahdiyah, N. D.. 2019. Dampak Pertumbuhan Penduduk Terhadap Alih Fungsi Lahan Pertanian di Kabupaten Cirebon Tahun 2010-2016. Jurnal Online Institut Teknologi Nasional, 2019(1): 21-29.
Kurniawan, A., Holisin, I., Kristianti, F.. 2017. Aplikasi Persamaan Differensial Biasa Model Eksponensial dan Logistik pada Pertumbuhan Penduduk Kota Surabaya. Journal of Mathematics Education, Science and technology, 2(1): 129-141.
Pratiwi, C. D.. 2020. Aplikasi Persamaan Differensial Model Populasi Logistik untuk Mengestimasi Penduduk di Kota Balikpapan. AdMathEdu,10(1): 63-76.
Rina, I., Husna, R.. 2019. Aplikasi Persamaan Differensial pada Model Pertumbuhan Populasi dengan Pertumbuhan Terbatas. Jurnal Sains dan Teknologi, 11(1): 22-27.
Robbaniyyah, N. A. I. (2022). Pengembangan Metode Iterasi Petviashvili dalam Penentuan Solusi Gelombang Stasioner pada Persamaan Bertipe Schrödinger Nonlinear dengan Fungsi Potensial V (x). EIGEN MATHEMATICS JOURNAL, 47-53.
Robbaniyyah, N. A. I., Muliyanti, A. S., Malasso, D. A., & Pajri, D. H. (2024). Simulasi dan Akurasi Numerik Persamaan Gelombang Satu Dimensi Menggunakan Aproksimasi Metode Beda Hingga. Semeton Mathematics Journal, 1(1), 8-14.
Yunianto, D.. 2021. Analisis Pertumbuhan dan Kepadatan Penduduk Terhadap Pertumbuhan Ekonomi. Forum Ekonomi, 23(4): 687-698.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in the Eigen Mathematics Journal will be available for free reading and downloading. The license applied to this journal is Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA).