Numerical Analysis of Mathematical Model for Diabetes Mellitus Disease by Using Adam-Bashfort Moulton Method

Authors

  • Nuzla Af’idatur Robbaniyyah Department of Mathematics, University of Mataram
  • Salwa Salwa Department of Mathematics, University of Mataram
  • Andika Ellena Saufika Hakim Maharani Department of Mathematics, University of Mataram

DOI:

https://doi.org/10.29303/emj.v7i2.245

Keywords:

Diabetes Mellitus, Adam-Bashfort Moulton Method

Abstract

Diabetes mellitus is a metabolic disorder characterized by elevated blood glucose levels, known as hyperglycemia. The objective of this study is to develop a mathematical model of diabetes mellitus. The model will be analyzed in terms of its equilibrium points using the Adam-Bashforth Moulton numerical method. The numerical method that used is a multistep method. The predictor step employs the Runge-Kutta method, while the corrector step uses the Adam-Bashforth Moulton method. The mathematical model of diabetes mellitus is categorized into two classes: uncomplicated diabetes mellitus and complicated diabetes mellitus. The resulting model identifies two equilibrium points: the endemic equilibrium point (complicated) and the disease-free equilibrium point (uncomplicated). The eigenvalues of these equilibrium points are positive real numbers and negative real numbers. Therefore, the stability of the system is found to be unstable and asymptotically stable, indicating that the population of individuals with uncomplicated diabetes mellitus will continue to rise, whereas the population with complications will not increase significantly over time.

References

Akinsola, V. O., & Oluyo, T. O. (2019). Mathematical analysis with numerical solutions of the mathematical model for the complications and control of diabetes mellitus. Journal of Statistics and Management systems, 22(5), 845-869.

AlShurbaji, M., Kader, L. A., Hannan, H., Mortula, M., & Husseini, G. A. (2023). Comprehensive study of a diabetes mellitus mathematical model using numerical methods with stability and parametric analysis. International Journal of Environmental Research and Public Health, 20(2), 939.

Dedov, I. I., Shestakova, M. V., Vikulova, O. K., Zheleznyakova, A. V., Isakov, M. A., Sazonova, D. V., & Mokrysheva, N. G. (2023). Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus, 26(2), 104-123.

Ekawati, D. (2021). Model Matematika pada Penyakit Diabetes Melitus dengan Faktor Genetik dan Faktor Sosial. Journal of Mathematics: Theory and Applications, 23-30.

Gao, Y., Wang, Y., Zhai, X., He, Y., Chen, R., Zhou, J., ... & Wang, Q. (2017). Publication trends of research on diabetes mellitus and T cells (1997–2016): A 20-year bibliometric study. PloS one, 12(9), e0184869.

Irina, F., 2017, Metode Penelitian Terapan, Parama Ilmu, Yogyakarta.

Irwan, I. (2019). Model Matematika Penyakti Diabetes Melitus. Jurnal Varian, 2(2), 68-72.

Kaya, K., Darmawati, dan Ekawati, D., 2021, Model Matematika pada Penyakit Diabetes Melitus dengan Faktor Genetik dan Faktor Sosial, JOMTA Journal of Mathematics: Theory and Applications, 3 (1): 2722-2705.

Mukhtar, Y., Galalain, A., & Yunusa, U. (2020). A modern overview on diabetes mellitus: a chronic endocrine disorder. European Journal of Biology, 5(2), 1-14.

Suryanto, A. (2017). Metode numerik untuk persamaan diferensial biasa dan aplikasinya dengan MATLAB. Universitas Negeri Malang.

Shabestari, P. S., Rajagopal, K., Safarbali, B., Jafari, S., & Duraisamy, P. (2018). A novel approach to numerical modeling of metabolic system: Investigation of chaotic behavior in diabetes mellitus. Complexity, 2018(1), 6815190.

Poznyak, A., Grechko, A. V., Poggio, P., Myasoedova, V. A., Alfieri, V., & Orekhov, A. N. (2020). The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International journal of molecular sciences, 21(5), 1835.

Downloads

Published

2024-12-14

How to Cite

Robbaniyyah, N. A., Salwa, S., & Maharani, A. E. S. H. (2024). Numerical Analysis of Mathematical Model for Diabetes Mellitus Disease by Using Adam-Bashfort Moulton Method. EIGEN MATHEMATICS JOURNAL, 7(2), 121–129. https://doi.org/10.29303/emj.v7i2.245

Issue

Section

Articles