Prediction of Rainfall in Lampung Province Using Tweedie Mixture Distribution with PCA Reduction

Authors

  • Sari Utami Department of Statistics, Nahdlatul Ulama University Lampung
  • Ma’rufah Hayati Department of Actuarial Science, Faculty of Science, Institut Teknologi Sumatera
  • Reni Permatasari Department of Statistics, Nahdlatul Ulama University Lampung

DOI:

https://doi.org/10.29303/emj.v8i2.280

Keywords:

Generalized Linear Model, Tweedie Mixture, Principal Component Analysis, Exponential Dispersion Model, Rainfall

Abstract

Accurate rainfall prediction is crucial for supporting the agricultural sector in Lampung Province. This research employs the Exponential Dispersion Model (EDM), a special case of the Generalized Linear Model (GLM), incorporating a Tweedie mixture distribution with Principal Component Analysis (PCA) to reduce correlated variables. Rainfall data were obtained from the Meteorology, Climatology, and Geophysics Agency (BMKG) through twelve rain observation posts (2013-2022), and supplemented with precipitation data from the General Circulation Model (GCM) obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF). The Tweedie mixture distribution was selected for its ability to handle non-normally distributed rainfall data containing zero values. The results show that the Root Mean Square Error of Prediction (RMSEP) for the Tweedie mixture-PCA model at the Gisting Atas station is 163.90, while the Normal-PCA model achieved 169.11. Therefore, the Tweedie mixture-PCA approach is more effective and recommended for improving rainfall prediction in Lampung Province, offering potential benefits for agricultural planning and resource management.

References

F. A. Gusmayanti, E. Evi, and J. Sudrajat, “Pengaruh perubahan curah hujan terhadap produktivitas padi sawah di kalimantan barat,” Jurnal Ilmu Lingkungan, vol. 19, no. 2, pp. 237–246, 2021. https://doi.org/10.14710/jil.19.2.237-246.

Dinas Ketahanan Pangan, Tanaman Pangan dan Hortikultura Provinsi Lampung, “Kontribusi komoditas unggulan lampung tingkatkan perekonomian nasional,” 2023. https://dinastph.lampungprov.go.id/detail-post/kontribusi-komoditas-unggulan-lampung-tingkatkan-perekonomian-nasional.

B. Gwambene, E. Liwenga, and M. C, “Climate change and variability impacts on agricultural production and food security for the smallholder farmers in rungwe, tanzania.,” Environmental management, vol. 71, no. 1, pp. 3–14, 2023. https://doi.org/10.1007/s00267-022-01628-5.

R. N. Rachmawati, I. Sungkawa, and A. Rahayu, “Extreme rainfall prediction using bayesian quantile regression in statistical downscaling modeling,” Procedia Computer Science, vol. 157, pp. 406–413, 2019. https://doi.org/10.1016/j.procs.2019.08.232.

A. A. Keller, K. L. Garner, N. Rao, E. Knipping, and J. Thomas, “Downscaling approaches of climate change projections for watershed modeling: Review of theoretical and practical considerations,” PLOS Water, vol. 1, pp. 1–20, 09 2022. https://doi.org/10.1371/journal.pwat.0000046.

Z. Wan, I. Lopez-Gomez, R. Carver, T. Schneider, J. Anderson, F. Sha, and L. Zepeda-Núñez, “Statistical downscaling via high-dimensional distribution matching with generative models,” 12 2024. https://doi.org/10.48550/arXiv.2412.08079.

N. C. Dzupire, P. Ngare, and L. Odongo, “A poisson-gamma model for zero inflated rainfall data,” Journal of Probability and Statistics, vol. 2018, no. 1, p. 1012647, 2018. https://doi.org/10.1155/2018/1012647.

K. Burak and A. Kashlak, “Bootstrapping generalized linear models to accommodate overdispersed count data,” Statistical Papers, vol. 65, pp. 1–20, 03 2024. https://doi.org/10.1007/s00362-024-01534-4.

R. Jiang, X. Zhan, and T. Wang, “A flexible zero-inflated poisson-gamma model with application to microbiome sequence count data,” Journal of the American Statistical Association, vol. 118, no. 542, pp. 792–804, 2023. https://doi.org/10.1080/01621459.2022.2151447.

M. Hayati and R. Permatasari, “Comparison of generalized linear model between gamma and tweedie compound response for rainfall prediction in lampung province,” Asian Journal of Probability and Statistics, vol. 26, p. 41–49, Jan. 2024. https://doi.org/10.9734/ajpas/2024/v26i1583.

R. L. Wilby and T. M. L. Wigley, “Precipitation predictors for downscaling: observed and general circulation model relationships,” International Journal of Climatology, vol. 20, no. 6, pp. 641–661, 2000. https://doi.org/10.1002/(SICI)1097-0088(200005)20:6%3C641::AID-JOC501%3E3.0.CO;2-1.

R. E. Benestad, D. Chen, A. Mezghani, L. Fan, and K. Parding, “On using principal components to represent stations in empirical–statistical downscaling,” Tellus A: Dynamic Meteorology and Oceanography, vol. 67, no. 1, p. 28326, 2015. https://doi.org/10.3402/tellusa.v67.28326.

H. F. Kaiser, “A second generation little jiffy,” Psychometrika, vol. 35, no. 4, p. 401–415, 1970. https://doi.org/10.1007/BF02291817.

M. M. Hasan and P. K. Dunn, “A simple poisson–gamma model for modelling rainfall occurrence and amount simultaneously,” Agricultural and Forest Meteorology, vol. 150, no. 10, pp. 1319–1330, 2010. https://doi.org/10.1016/j.agrformet.2010.06.002.

P. Dunn and G. Smyth, “Series evaluation of tweedie exponential dispersion densities,” Statistics and Computing, vol. 15, pp. 267–280, 10 2005. https://doi.org/10.1007/s11222-005-4070-y.

R. Altman, O. Harari, N. Moisseeva, and D. Steyn, “Statistical modelling of the annual rainfall pattern in guanacaste, costa rica,” Water, vol. 15, p. 700, 02 2023. https://doi.org/10.3390/w15040700?urlappend=%3Futm source%3Dresearchgate.

P. K. Dunn, “Occurrence and quantity of precipitation can be modelled simultaneously,” International Journal of Climatology, vol. 24, no. 10, pp. 1231–1239, 2004. https://doi.org/10.1002/joc.1063.

F.-Y. Chen, S. S. Yang, and H.-C. Huang, “Modeling pandemic mortality risk and its application to mortality-linked security pricing,” Insurance: Mathematics and Economics, vol. 106, pp. 341–363, 2022. https://doi.org/10.1016/j.insmatheco.2022.06.002.

R. Ma and B. Jørgensen, “Nested generalized linear mixed models: An orthodox best linear unbiased predictor approach,” Journal of the Royal Statistical Society Series B, vol. 69, pp. 625–641, 09 2007. https://doi.org/10.1111/j.1467-9868.2007.00603.x.

M. Hayati, A. H. Wigena, A. Djuraidah, and A. Kurnia, “A new approach to statistical downscaling using tweedie compound poisson gamma response and lasso regularization,” Communications in Mathematical Biology and Neuroscience, vol. 21, pp. 1–16, May 2021. https://doi.org/10.28919/cmbn/5936.

T. Peng, Y. Wu, J. Zhao, C. Wang, J. Wang, and J. Cai, “Ultrasound prostate segmentation using adaptive selection principal curve and smooth mathematical model,” Journal of Digital Imaging, vol. 36, pp. 947–963, 2023. https://doi.org/10.1007/s10278-023-00783-3.

R. Dawson, “How significant is a boxplot outlier?,” Journal of Statistics Education, vol. 19, no. 2, 2011. https://doi.org/10.1080/10691898.2011.11889610.

P. McCullagh and J. A. Nelder, Generalized Linear Models. 01 2019. https://doi.org/10.1201/9780203753736.

R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, 2006. https://doi.org/10.1016/j.ijforecast.2006.03.001.

Downloads

Published

2025-11-11

How to Cite

Utami, S., Hayati, M., & Permatasari, R. (2025). Prediction of Rainfall in Lampung Province Using Tweedie Mixture Distribution with PCA Reduction. EIGEN MATHEMATICS JOURNAL, 8(2), 133–146. https://doi.org/10.29303/emj.v8i2.280

Issue

Section

Articles