Application of Optimal Control to the SEITRS Mathematical Model of Tuberculosis Transmission with Control Variables Socialization and Therapy
DOI:
https://doi.org/10.29303/emj.v8i2.322Keywords:
Numerical simulation, optimal control, stability analysis, SEITRS mathematical model, tuberculosisAbstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which remains a serious public health concern. The objective of this study is to develop, analyze, and propose an optimal control strategy for the transmission dynamics of TB using an SEITRS mathematical model. The model consists of five population compartments: Susceptible (S), Exposed (E), Infected (I), Treatment (T), and Recovered (R). The methodology involves constructing the SEITRS model, determining the equilibrium points, and analyzing their stability under different conditions of the basic reproduction number. The model has two equilibrium points, namely the non-endemic and endemic equilibrium. If the basic reproduction number is less than one and certain conditions are satisfied, the non-endemic equilibrium is locally asymptotically stable. Conversely, if the basic reproduction number is greater than one and specific conditions are met, the endemic equilibrium becomes locally asymptotically stable. Furthermore, this study provides optimal control strategies in the SEITRS model. We use two control variables in this model, namely socialization and therapy, to reduce the number of infected individuals. The sufficient conditions for the existence of optimal controls are derived using Pontryagin’s Maximum Principle. Numerical simulations are then conducted to examine the impact of applying these controls on the system. The simulation results indicate that the simultaneous implementation of socialization and therapy controls is effective in reducing the number of TB-infected individuals.References
World Health Organisation, “Global tuberculosis report,” 2023. https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024. e, Last accessed on 2024-09-18.
F. Isbaniah et al., Tuberkulosis: Pedoman Diagnosis dan Penatalaksanaan di Indonesia (Edisi Revisi 2). Perhimpunan Dokter Paru Indonesia, 2021. https://123dok.com/document/qmj9xjv4-tuberkulosis-pedoman-diagnosispenatalaksanaan-indonesia-perhimpunan-dokter-indonesia.html.
A. Puspitasari et al., “Analisis kestabilan dan kontrol optimal model penyebaran tuberkulosis (tb) dengan terapi dan vaksinasi menggunakan metode runge kutta,” Jurnal Sains dan Seni ITS, vol. 8, no. 2, pp. 58–64, 2019. https://media.neliti.com/media/publications/486039-none-484462f4.pdf.
Surati et al., Edukasi Tuberkulosis. Penerbit Nasya Expanding Management, 2023. https://books.google.co.id/books/about/Edukasi Tuberkulosis.html?id=7aTfEAAAQBAJ&redir esc=y.
S. D. Pralambang and S. Setiawan, “Faktor risiko kejadian tuberkulosis di indonesia,” Jurnal Biostatistik, Kependudukan dan Informatika Kesehatan, vol. 2, no. 1, pp. 62–63, 2021. http://dx.doi.org/10.51181/bikfokes.v2i1.4660.
M. Ridwan et al., “Tuberkulosis paru dan pencegahannya: Literatur review,” Idea Nursing Journal, vol. 12, no. 1, pp. 27–32, 2021. https://journal.fdi.or.id/index.php/jmas/article/view/427.
M. Jannah et al., “Analisis kestabilan seir untuk penyebaran covid-19 dengan parmeter vaksinasi,” Jurnal Ilmu Matematika dan Terapanl, vol. 15, no. 3, pp. 535–542, 2021. http://dx.doi.org/10.30598/barekengvol15iss3pp535-542.
R. A. S. Saleng et al., “Analisis dinamik model matematika penyebaran penyakit tuberculosis dengan pengaruh vaksin dan pengobatan di provinsi gorontalo,” Equator: Journal of Mathematical and Statistical Sciences, vol. 1, no. 1, pp. 18–30, 2022. https://jurnal.untan.ac.id/index.php/EMSS/article/view/59111.
A. Faruk, “Model epidemik tuberkulosis seir dengan terapi pada individu terinfeksi,” Jurnal Penelitian Sains, vol. 18, no. 3, pp. 99–104, 2016. https://ejurnal.mipa.unsri.ac.id/index.php/jps/article/view/16.
T. Khan et al., “Spreading dynamic of acute and carrier hepatitis b with nonlinear incidence,” PLoS ONE, vol. 13, no. 4, pp. 1–23, 2018. https://doi.org/10.1016/j.chaos.2019.04.033.
G. J. Olsder, Mathematical System Theory, Second Edition. Delpht University Press., 2002. https://books.google.co.id/books/about/PEMODELAN MATEMATIKA.html?id=7ExhEAAAQBAJ&redir esc=y.
M. Z. Ndii, Pemodelan Matematika. Penerbit Nasya Expanding Management., 2022. https://books.google.co.id/books/about/PEMODELAN MATEMATIKA.html?id=7ExhEAAAQBAJ&redir esc=y.
D. S. Naidu, Optimal Control Systems. CRC Press, 2022. https://books.google.co.id/books/about/Optimal Control Systems.html?id=hGxurdEZVtkC&redir esc=y.
D. E. Mahmudah and Z. Naf’an, “Kontrol optimal model epidemik host-vector dengan simulasi menggunakan forward-backward sweep method,” Jurnal Ilmiah Teknologi dan Informasi ASIA, vol. 8, no. 1, pp. 1–9, 2014. https://jurnal.asia.ac.id/index.php/jitika/article/view/168.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in the Eigen Mathematics Journal will be available for free reading and downloading. The license applied to this journal is Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA).
Most read articles by the same author(s)
- Andri Azmul Fauzi, Lalu Muhammad Ridwan, Dwi Agustini, Desi Febriani Putri, Rinancy Tumilaar, Asmaidi Asmaidi, Indriasri Raming, Natural Cubic Spline Method as a Method in Constructing a Life Table in Gegelang Village West Lombok , EIGEN MATHEMATICS JOURNAL: Vol. 7 No. 1 (2024): June



