Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-12-30

COVID-19 Intervention Model for Bali Province GRDP Prediction

Institut Teknologi Kalimantan
Institut Teknologi Kalimantan
Institut Teknologi Kalimantan
Institut Teknologi Kalimantan
Forecasting Intervention RMSE SMAPE GRDP

Abstract

COVID 19 is a disease caused by SARS-CoV-2. This virus spread very quickly to almost all countries including Indonesia. Bali tourism has developed in such a way and contributed greatly to regional development directly or indirectly. Gross Regional Domestic Product or GRDP has an important role in increasing the economic growth of a region, where the higher the GRDP, it can be said that the economic growth is also high. This study aims to analyze the impact of COVID 19 on the GRDP of the Province of Bali using an intervention model. The data used in this study is secondary data from quarterly GRDP on the basis of current prices in the accommodation, food and drink sector. Data was collected from the first quarter of 2010 to the fourth quarter of 2021. Based on the modeling that has been carried out with the intervention model, the best model to predict the impact of COVID 19 on GRDP in Bali Province is ARIMA(0,1,0)(1,0,0)4 r=1 with SMAPE value of 8.327 and MdAPE of 0.067.        

References

  1. Abdy, M., Sukarna, & Rahmawati. (2020). Time Series Fuzzy pada Peramalan Konstribusi Pengeluaran. Jurnal Matematika, Sains, dan Pembelajarannya, 158-164.
  2. Badan Pusat Statistik. (2022, Mei 12). Berita Resmi Statistik 1 Februari 2021. Retrieved from https://www.bps.go.id/pressrelease/2021/02/01/1796/jumlah-kunjungan-wisman-ke-indonesia-bulan-desember-2020-mencapai-164-09-ribu-kunjungan-.html
  3. Bowerman, B.L., O’Connel, R.T, Koehler, A.B. (2004) Forecasting, Time Series and Regression: An Applied Approach 4th ed. California: Thomson Brooks/Cole.
  4. Chaplyuk, V. Z., Alam, R. M., Abueva, M. M., & Humssi, A. S. (2021). COVID-19 and Its Impack on Global Economic Spheres. Modern Global Economic System : Evolutional Development vs Revoluationary Leap, 198, 824-833.
  5. Coibion, O., Gorodnichenko, Y., & Weber, M. (2020). Labor Markets During The COVID-19 Crisis : A Preliminary View . NBER Working Paper 27017, 27017.
  6. EGSAUGM. (2021, Februari 11). Pariwisata Indonesia di Tengah Pandemi. Retrieved from https://egsa.geo.ugm.ac.id/2021/02/11/pariwisata-indonesia-di-tengah-pandemi
  7. Hardi, D. T., Safitri, D., & Agus, R. (2019). Peramalan PDRB Pada Sektor Pertanian, Kehutan dan Perikanan dengan Menggunakan Singular Specturm Analysis (SSA). Jurnal Gausian, 68-80.
  8. Hariani, T. (2018) Peramalan Produk Domestik Regional Bruto (PDRB) Provinsi Sulawesi Selatan dengan Menggunakan Metode Fuzzy Time Series. Undergraduate (S1) thesis, Universitas Islam
  9. Ismail, Z., Suhartono, Yahya, A., & Efendi , R. (2009). Intervention Model for Analyzing the Impact of Terrorism to Tourism Industry. Journal of Mathematics and Statistics, 322-329.
  10. Maziyah, L. (2021). Analisis Peramalan Produk Domestik Regional Bruto (PDRB) pada Masa Pandemi COVID-19 Sebagai Teknik Ukur Kinerja Perekonomian di Provinsi Jawa Timur. Surabaya: Skripsi Sarjana Program Studi Matematika, Universitas Islam Negeri Sunan Ampel.
  11. Purwahita, R., Putu, B. W., Ardiansa, I. K., & Winia, I. M. (2021). Dampak COVID-19 Terhadap Pariwisata Bali Dari Sektor Sosial, Ekonomi, dan Lingkungan. JKTP, 68-80.
  12. Usmia, N., & Noeryanti. (2021). Peramalan Data Produk Domestik Regional Bruto Daerah Istimewa Yogyakarta Menggunakan Kombinasi Fuzzy Time Series Chen Dengan Practicle Swarm Optimization. Jurnal Statistika Industri dan Komputasi, 123-131.
  13. Wellyanti, B. (2019). Peramalan Produk Domistik Regional Bruto (PDRB) Provinsi Bali Triwulan (Q-To-Q). JEKT, 63-72.
  14. Whitehead, M., Taylor-robinson, D., & Barr, B. (2021). Poverty, Health, and COVID-19 Yet Again, Poor Families Will be Hardest Hit by the Pandemic's Long Economic Fallout BMJ. 376.
  15. Yuniarti, R. (2020). Analisa Metode Single Eksponential Smoothing Sebagai Peramalan Penjualan Terhadap Penyalur Makanan (Studi Kasus: Lokatara Dimsum). Jurnal Manajemen dan Bisnis, 29-33.