Comparison of Several Univariate Time Series Methods for Inflation Rate Forecasting

Authors

  • Salfina Salfina Statistics Program Study, Institut Teknologi Kalimantan
  • Yunissa Hernanda Statistics Program Study, Institut Teknologi Kalimantan
  • Mega Silfiani Statistics Program Study, Institut Teknologi Kalimantan

DOI:

https://doi.org/10.29303/emj.v7i2.200

Keywords:

ARIMA, Double Exponential Smoothing, RMSE, Trend Projection

Abstract

Forecasting inflation is very crucial for a country because inflation is one of indicator to measure development of the country. This study aims to evaluate the effectiveness of three univariate time series methods i.e., ARIMA (Autoregressive Integrated Moving Average), Double Exponential Smoothing (DES), and Trend Projection (TP), in forecasting Indonesia’s monthly inflation rates using data from 2018 to 2022. The analysis identifies DES as the most accurate method, evidenced by its lowest Root Mean Square Error (RMSE) value of 2.9296, outperforming ARIMA and TP, which have RMSE values of 13.1479 and 3.47053, respectively. Consequently, DES was selected as the preferred model for forecasting inflation over the next 36 month, with the forecasts indicating a consistent downward trend in inflation throughout the year. While these findings highlight DES's effectiveness, the study also acknowledges limitations, including its reliance on univariate models that do not incorporate other economic variables, and the potential limitations of the dataset’s specific time frame. To address these limitations, future research should consider multivariate models, integrate machine learning techniques, and conduct scenario analyses to improve forecast accuracy and robustness. Despite these constraints, the study provides valuable insights into inflation forecasting in Indonesia, offering a practical tool for policymakers and contributing to more informed economic decision-making.

References

Hayuningtyas, R. Y. “Sistem Informasi Peramalan Persediaan Barang Menggunakan Metode SES Dan DES,” Indones. J. Softw. Eng., vol. 4, no. 1, pp. 1–6, 2019, doi: https://doi.org/10.31294/ijse.v4i1.6228

Hyndman, R. J., dan Athanasopoulos, G. Forecasting: principles and practice, 2nd ed. Melbourne, Australia.: OTexts, 2018. [Online]. Available: https://otexts.com/fpp2

Hyndman, R. J., Koehler, A. B., Ord, J. K., dan Snyder, R. D. Forecasting with Exponential Smoothing: The State Space Approach. Berlin, Germany: Springer Berlin Heidelberg, 2008. https://robjhyndman.com/expsmooth/

Irawan, R. Y., Yuly Saptomo, W. L., dan Setiyowati, S. “Penerapan Metode Double Exponential Smoothing Untuk Peramalan Tingkat Indeks Pembangunan Manusia Berbasis Sistem Informasi Goegrafis Di Provinsi Jawa Tengah,” J. Teknol. Inf. dan Komun., vol. 7, no. 2, pp. 18–28, 2019, doi: https://doi.org/10.30646/tikomsin.v7i2.437

Lembang, F. K. “Prediksi Laju Inflasi Di Kota Ambon Menggunakan Metode ARIMA Box Jenkins,” Stat. J. Theor. Stat. Its Appl., vol. 16, no. 2, pp. 95–102, 2017, doi: https://doi.org/10.29313/jstat.v16i2.2188

Madu, A., “Perbandingan Metode Trend Projection Dan Metode Backpropagation Dalam Meramalkan Jumlah Korban Kecelakaan Lalu Lintas Yang Meninggal Dunia Di Kabupaten Timor Tengah Utara, Nusa Tenggara Timur,” J. Mercumatika, vol. 1, no. 1, pp. 44–57, 2016. doi: https://doi.org/10.26486/mercumatika.v1i1.188

Mizan, S. Suriani, B. D. P. R, N., Mihaimin, R., Laili, N. dan Ernita, W. “Peramalan Data Penduduk Miskin Provinsi Nusa Tenggara Barat ( NTB ) Model Auto Regressive Integrated Moving Average ( ARIMA ),” J. Pemikir. dan Penelit. Pendidik. Mat., vol. 2, no. 1, pp. 1–10, 2019. https://journal.rekarta.co.id/index.php/jp3m/article/view/207

Sarbaini, S., & Nazaruddin, N. (2023). Pengaruh kenaikan BBM terhadap laju inflasi di Indonesia. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(I), 25-32. doi: https://doi.org/10.55826/tmit.v2iI.132

Silfiani, M. “Forecasting Inflation in Indonesia Using Hybrid ARIMA and Artificial Neural Networks Ensemble,” Asian Institute of Technology, 2014. https://repository.its.ac.id/105400/

Silfiani M. dan Lembang, G. R. “Perbandingan Peramalan Jumlah Kasus Kecelakaan Lalu Lintas Kota Balikpapan dengan Linear Trend Analysis dan Double Exponential Smoothing,” vol. 01, pp. 14–18, 2023. doi: https://doi.org/10.35718/equiva.v1i1.757

Silfiani, M. dan Suhartono, “Aplikasi Metode Ensembel untuk Peramalan Inflasi di Indonesia,” J. Sains dan Seni ITS, vol. 1, no. 1, pp. D171–D176, 2012. doi: http://dx.doi.org/10.12962/j23373520.v1i1.1965

Wardani, R. P. dan Winarno, B. “Model Peramalan Laju Inflasi di Jawa Tengah Menggunakan Metode Hybrid ARIMA (Autoregressive Integrated Moving Average)-ANFIS (Adaptive Neuro Fuzzy Inference System),” Pros. Semin. Nas. Mat., vol. 6, pp. 739–744, 2023, https://journal.unnes.ac.id/sju/prisma/article/view/66920

Wei, W. W. S.Time Series Analysis - Univariate and Multivariate Methods, Second edi. Boston: Pearson Addison Wesley, 2006.

Downloads

Published

2024-09-20

How to Cite

Salfina, S., Hernanda, Y., & Silfiani, M. (2024). Comparison of Several Univariate Time Series Methods for Inflation Rate Forecasting. EIGEN MATHEMATICS JOURNAL, 7(2), 81–88. https://doi.org/10.29303/emj.v7i2.200

Issue

Section

Articles

Most read articles by the same author(s)