Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-04-07

The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero)

Universitas Muhammadiyah Semarang
Universitas Muhammadiyah Semarang
Universitas Muhammadiyah Semarang
Universitas Muhammadiyah Semarang
Universitas Muhammadiyah Semarang
Autoregressive Integrated Moving Average (ARIMA) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) stock prices PT Jasa Marga

Abstract

PT Jasa Marga is a large company in Indonesia that develop and operation the toll roads and is known as one of the blue chip companies with LQ45 shares. However, share prices have high volatility or rise and fall quickly so their value is always changing. Therefore, forecasting is needed to predict the share price of PT Jasa Marga in the future in order to know the movement of its share price. The Autoregressive Integrated Moving Average (ARIMA) method is a method that can predict data with high volatility, but has the disadvantage of residuals containing heteroscedasticity. So, the addition of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was carried out to overcome the heteroscedasticity problem that was initially caused by the ARIMA model so it could predict data with high volatility more optimally. Therefore, this research applies the ARIMA-GARCH method to find the best model for forecasting the daily share price index of PT Jasa Marga. The data used comes from the daily closing stock price index of PT Jasa Marga (Persero) for the period January 2015 to May 2023. The measurement of forecasting accuracy uses the Mean Absolute Percentage Error (MAPE). The forecasting results show that the best model uses ARIMA (2,1,1) - GARCH (1,3) with a MAPE value of 6.825728%, which indicates very good forecasting results because the MAPE value is <10%.

References

  1. Afrianto, R. B., Tjandrasa, H., Arieshanti, I., Informatika, T., & Informasi, F. T. (2013). Menggunakan Metode Back Propagation. Simantec, 3(3), 132–141.
  2. Arashi, M., & Rounaghi, M. M. (2022). Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model. Future Business Journal, 8(1). https://doi.org/10.1186/s43093-022-00125-9
  3. Astutiningtyas, L. (2023). Implementasi Metode Moving Average dan Single Exponential Smoothing dalam Memprediksi Harga Saham Perusahaan Jasa Pembangunan Tol. 7(2721), 1–8.
  4. Ayudhiah, M. P., Bahri, S., & Fitriyani, N. (2020). Peramalan Indeks Harga Konsumen Kota Mataram Menggunakan Vector Autoregressive Integrated Moving Average. Eigen Mathematics Journal, 3(1), 1–8. https://doi.org/10.29303/emj.v3i1.61
  5. Chen, Y., Zhong, Q., & Jiang, F. (2020). The capital market spillover effect of product market advertising: Evidence from stock price synchronicity. Frontiers of Business Research in China, 14(1). https://doi.org/10.1186/s11782-020-00078-2
  6. Ena, M., Herdiani, E. T., & Tinungki, G. M. (2022). The application of the arima – garch method in predicting the Indosat stock price. International Research Journal of Advanced Engineering and Science, 7(3), 262–265.
  7. Farida, Y., Farmita, M., Ulinnuha, N., & Yuliati, D. (2022). Forecasting Population of Madiun Regency Using ARIMA Method. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 7(3), 420–431. https://doi.org/10.18860/ca.v7i3.16156
  8. Garima Jain, E., & Mallick, B. (2017). A Study of Time Series Models ARIMA and ETS. International Journal of Modern Education and Computer Science, 9(4), 57–63. https://doi.org/10.5815/ijmecs.2017.04.07
  9. Harsyiah, L., Fitriyani, N., & Salwa, S. (2020). Peramalan Jumlah Siswa Baru Madrasah Aliyah (MA) Manhalul Ma’arif Darek-Lombok Tengah. Eigen Mathematics Journal, 3(2), 110–117. https://doi.org/10.29303/emj.v3i2.88
  10. Hidayat, A. T., & Subanar, S. (2020). Persamaan Diferensial Ornstein-Uhlenbeck Dalam Peramalan Harga Saham. Media Statistika, 13(1), 60–67. https://doi.org/10.14710/medstat.13.1.60-67
  11. Idris, S., & Mohammed, Y. A. (2021). On Comparative Performances of ARIMA Hybrid, ARIMA-ARCH, and Hybrid ARIMA-GARCH Models in Modeling The Volatility of Foreign Exchange. Global Scientific Journals, 9(3), 31–40. www.globalscientificjournal.com
  12. Kurniasari, D., Mukhlisin, Z., Wamiliana, W., & Warsono, W. (2023). Performance of the Accuracy of Forecasting the Consumer Price Index Using the Garch and Ann Methods. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0931–0944. https://doi.org/10.30598/barekengvol17iss2pp0931-0944
  13. Mallikarjuna, M., & Rao, R. P. (2019). Evaluation of forecasting methods from selected stock market returns. Financial Innovation, 5(1). https://doi.org/10.1186/s40854-019-0157-x
  14. Mardiyah, I., Dianita Utami, W., Rini Novitasari, D. C., Hafiyusholeh, M., & Sulistiyawati, D. (2021). Analisis Prediksi Jumlah Penduduk Di Kota Pasuruan Menggunakan Metode Arima. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 525–534. https://doi.org/10.30598/barekengvol15iss3pp525-534
  15. Putri, F. T. A., Zukhronah, E., & Pratiwi, H. (2021). Model ARIMA-GARCH Pada Peramalan Harga Saham PT. Jasa Marga (Persero). Business Innovation and Entrepreneurship Journal, 3(3), 164–170. https://doi.org/10.35899/biej.v3i3.308
  16. Putri, L. P. (2015). Pengaruh Profitabilitas Terhadap Harga Saham Pada Perusahaan Pertambangan Batubara di Indonesia. Jurnal Ilmiah Manajemen Dan Bisnis, 16(No.2), 49–59. http://jurnal.umsu.ac.id
  17. Qalbi, A., Nurfadilah, K., & Alwi, W. (2021). Comparison of Fuzzy Time Series Methods and Autoregressive Integrated Moving Average (ARIMA) for Inflation Data. Eigen Mathematics Journal, 4(2), 40–50. https://doi.org/10.29303/emj.v4i2.122
  18. Raneo, A. P., & Muthia, F. (2019). Penerapan Model GARCH Dalam Peramalan Volatilitas di Bursa Efek Indonesia. Jurnal Manajemen Dan Bisnis Sriwijaya, 16(3), 194–202. https://doi.org/10.29259/jmbs.v16i3.7462
  19. Rezaldi, D. A., & Sugiman. (2021). Peramalan Metode ARIMA Data Saham PT . Telekomunikasi Indonesia. Prisma, 4, 611–620.
  20. Rizki, M. I., Ammar, T., Fitriyani, F., & Fasya, S. (2021). Peramalan Indeks Harga Saham PT Verena Multi Finance Tbk Dengan Metode Pemodelan ARIMA Dan ARCH-GARCH. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 14(1), 11–23. https://doi.org/10.36456/jstat.vol14.no1.a3774
  21. Silitonga, D. (2021). Pengaruh Inflasi Terhadap Produk Domestik Bruto (Pdb) Indonesia Pada Periode Tahun 2010-2020. ESENSI: Jurnal Manajemen Bisnis, 24(1), 2021.
  22. Supriyanto, S., Utami, A. P., & Istikanaah, N. (2023). Model Peramalan Harga Saham Menggunakan Metode Arima – Garch (Studi Kasus Saham Pt. Unilever Indonesia). Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 15(1), 1. https://doi.org/10.20884/1.jmp.2023.15.1.8658
  23. Talumewo, S., Nainggolan, N., Langi, Y. A. R., Kunci, K., Harga, A.-G., & Peramalan, S. (2023). Penerapan Model ARIMA-GARCH Untuk Peramalan Harga Saham PT Adhi Karya (Persero) Tbk (ADHI.JK). Jurnal Matematika Dan Aplikasi, 12(2), 56–61. https://ejournal.unsrat.ac.id/index.php/decartesian
  24. Taufik, A. M. (2017). Perhitungan valuasi harga saham PT. Jasa Marga (Persero), Tbk. https://repository.unpar.ac.id/handle/123456789/5415
  25. Zahroh, A. (2016). Instrumen Pasar Modal. Iqtishoduna Jurnal Ekonomi Islam, 5(1), 51–65.

How to Cite

Amri, I. F., Sari, W., Widyasari, V. A., Nurohmah, N., & Haris, M. A. (2024). The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero). EIGEN MATHEMATICS JOURNAL, 7(1), 25–33. https://doi.org/10.29303/emj.v7i1.174