Forecasting the Volatility of Tuna Fish Prices in North Sumatra using the ARCH Method in the Period January - April 2024
DOI:
https://doi.org/10.29303/emj.v7i2.236Keywords:
Tuna, Autoregressive Moving Average (ARMA), Autoregressive Conditional Heteroskedasticity (ARCH), North Sumatra, ForecastingAbstract
Tuna (Euthynnus affinis) is one of the most important fisheries commodities in Indonesia with significant economic value, especially in its contribution to fisheries export revenue. However, the price of tuna experiences significant fluctuations that can affect local and national economic stability. This study analyzes the daily price fluctuations of tuna in the North Sumatra market from January 1, 2024 to April 29, 2024 using a time series analysis approach. Daily price data were collected and analyzed to identify existing price patterns and volatility. The Autoregressive Conditional Heteroskedasticity (ARCH) model was selected to address the heteroscedasticity in the data, which suggests that the volatility of tuna prices can be well predicted based on past price behavior. The analysis steps include identifying the optimal ARCH model using the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), as well as testing parameter significance and normality assumptions to validate the model fit. The results show that the ARMA (1,0,0) model is the optimal one to model the price volatility of yellow tuna with the MAPE obtained of 2.382. compared to the ARMA-ARCH method with the MAPE value obtained of 2,747. Because it still contains heteroskedasticity effects, even though the results are good, the prediction results do not closely match the original data. The model is effective in improving price forecasting accuracy, which is important to support decision-making in risk management and economic planning in the fisheries sector. The findings contribute to understanding the dynamics of the yellowtail market and optimizing strategies for fisheries management.References
Amri, I. F., Sari, W., Widyasari, V. A., & Haris, M. A. (2024). The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero). Eigen Mathematics Journal, 25-33. https://doi.org/10.29303/emj.v7i1.174
Andriyani, D., & Syahputra, T. W. (2021). Pengaruh Ekspor Ikan Tongkol/Tuna Indonesia Ke Jepang Terhadap Pertumbuhan Ekonomi Di Indonesia Dengan Model Dinamis Regression. Jurnal Ekonomi Regional Unimal, 15-22. https://doi.org/10.29103/jeru.v4i1.4815
Apriantari, N. K., Dirgayusa, I. G., & As-syakur, A. R. (2017). Pengaruh Hasil Tangkapan Ikan Tongkol (Euthynnus sp) dan Pendapatan Keluarga Nelayan Terhadap Tingkat Pendidikan Anak Keluarga Nelayan di Desa Seraya Timur, Kecamatan Karangasem, Kabupaten Karangasem. Journal of Marine and Aquatic Sciences, 242-250. https://doi.org/10.24843/jmas.2017.v3.i02.242-250
Clarissa, N., Nisrina, N., Irfan, M., & Taqiyyuddin, T. A. (2021). Penerapan Model ARCH-GARCH dalam Prediksi Harga Saham The Walt Disney. Jurnal Sains Matematika dan Statistika,, 108-120. http://dx.doi.org/10.24014/jsms.v7i2.13175
Karomah, Y., & Hendikawati, P. (2014). Estimasi Parameter Bootstrap pada Proses ARMA dan aplikasinya pada harga saham. UNNES Journal of Mathematics. https://journal.unnes.ac.id/sju/ujm/article/view/4343
Kiha, E. K., & Rindayati, W. (2013). Konvergensi Harga Pangan Pokok Antar Wilayah di Indonesia. Jurnal Ekonomi dan Kebijakan Pembangunan, 30-46. https://doi.org/10.29244/jekp.2.1.2013.30-46
Kusuma, Y. B. (2017). Proses Produksi Hasil Laut Dalam Upaya Memperoleh Produk Unggulan (Studi Kasus Pada UD Yanis Di Kelurahan Sukolilo Baru). Aplikasi Administrasi: Media Analisa Masalah Administrasi, 139-154. https://doi.org/10.30649/aamama.v20i2.78
Magfiroh, S., Sunarmo, A., & Primasari, D. (2018). Profesional Audit Dan Etika Kerja Terhadap Tindakan Whistleblowing. Jurnal Analisis Bisnis Ekonomi, 103-116. https://doi.org/10.31603/bisnisekonomi.v16i2.2619
Melyani, C. A., Nurtsabita, A., Shafa, G. Z., & Widodo, E. (2021). Peramalan inflasi di Indonesia menggunakan metode Autoregressive Moving Average (ARMA). Mathematics Education and Science, 67-74. https://doi.org/10.32665/james.v4i2.231
Muslihin, K. R., & Ruchjana, B. N. (2023). Model Autoregressive Moving Average (ARMA) untuk peramalan tingkat inflasi di Indonesia. Limits: Journal of Mathematics and Its Applications. http://dx.doi.org/10.12962/limits.v20i2.15098
Nasution, L. M. (2017). Statistik deskriptif. Hikmah, 49-55. https://e-jurnal.staisumatera-medan.ac.id/index.php/hikmah/article/view/16
Nikawanti, G., & Aca, R. (2021). Ecoliteracy: Membangun Ketahanan Pangan Dari Kekayaan Maritim Indonesia. Jurnal Kemaritiman: Indonesian Journal of Maritime, 149-166. https://doi.org/10.17509/ijom.v2i2.37603
Putro, E. A., Rimawati, E., & Vulandari, R. T. (2021). Prediksi Penjualan Kertas Menggunakan Metode Double Exponential Smoothing. Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 60-68. http://dx.doi.org/10.30646/tikomsin.v9i1.548
Silfani, D. (2022). Suplementasi Ikan Tongkol (Euthynnus Affinis) Terhadap Mutu Organoleptik, Kadar Protein Serta Daya Terima Risoles Sebagai Makanan Jajanan Anak Sekolah. http://repositoryperpustakaanpoltekkespadang.site/id/eprint/1328
Sintia, I., Pasarella, M. D., & Nohe, D. A. (2022). Perbandingan Tingkat konsistensi uji distribusi normalitas pada kasus tingkat pengangguran di Jawa. In Prosiding Seminar Nasional Matematika dan Statistika (Vol. 2). https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/844
Sitilamsyari, B., Asrizal, & Jolianis. (2014). Faktor-Faktor Yang Mempengaruhi permintaan konsumen Terhadap Ikan Tongkoldi Tiku Kecamatan Tanjung Mutiara Kabupatenagam. Pendidikan Ekonomi. https://www.neliti.com/publications/29858/efaktor-faktor-yang-mempengaruhipermintaankonsumen-terhadap-ikan-tongkoldi-tiku#cite
Sumiyati, Sandy, B. D., & Wilujeng, P. R. (2022). Metode Arch/Garch untuk memprediksi hubungan Economic Uncertainty akibat Pandemi Covid 19 dan Volatilitas Saham. Jurnal Bisnis dan Akuntansi, 117-130. https://doi.org/10.34208/jba.v24i1.1152
Tarlan, S. (2020). Analisis volatilitas dan value at risk pada sukuk indonesia dengan menggunakan model arch/garch (Bachelor's thesis, Jakarta. Fakultas Ekonomi dan Bisnis UIN Syarif Hidayatullah Jakarta. https://repository.uinjkt.ac.id/dspace/handle/123456789/38750?mode=full
Zakariya, F. (2020). Pemberdayaan Nelayan dalam Mambangun Kekuatan Ekonomi Melalui Pengolahan Ikan Di Desa Karangagung. Islamic Management and Empowerment Journal, 133-148. https://doi.org/10.18326/imej.v2i2.133-150
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles published in the Eigen Mathematics Journal will be available for free reading and downloading. The license applied to this journal is Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA).