Forecasting the Volatility of Tuna Fish Prices in North Sumatra using the ARCH Method in the Period January - April 2024

Authors

  • Riska Multiyaningrum Universitas Muhammadiyah Semarang
  • Ihsan Fathoni Amri Universitas Muhammadiyah Semarang
  • M. Al Haris Universitas Muhammadiyah Semarang
  • Havinka Angel Salsabilla Universitas Muhammadiyah Semarang
  • Heppy Nur Asavia Ginasputri Universitas Muhammadiyah Semarang
  • Salsabila Dhea Sintya Universitas Muhammadiyah Semarang

DOI:

https://doi.org/10.29303/emj.v7i2.236

Keywords:

Tuna, Autoregressive Moving Average (ARMA), Autoregressive Conditional Heteroskedasticity (ARCH), North Sumatra, Forecasting

Abstract

Tuna (Euthynnus affinis) is one of the most important fisheries commodities in Indonesia with significant economic value, especially in its contribution to fisheries export revenue. However, the price of tuna experiences significant fluctuations that can affect local and national economic stability. This study analyzes the daily price fluctuations of tuna in the North Sumatra market from January 1, 2024 to April 29, 2024 using a time series analysis approach. Daily price data were collected and analyzed to identify existing price patterns and volatility. The Autoregressive Conditional Heteroskedasticity (ARCH) model was selected to address the heteroscedasticity in the data, which suggests that the volatility of tuna prices can be well predicted based on past price behavior. The analysis steps include identifying the optimal ARCH model using the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), as well as testing parameter significance and normality assumptions to validate the model fit. The results show that the ARMA (1,0,0) model is the optimal one to model the price volatility of yellow tuna with the MAPE obtained of 2.382. compared to the ARMA-ARCH method with the MAPE value obtained of 2,747. Because it still contains heteroskedasticity effects, even though the results are good, the prediction results do not closely match the original data. The model is effective in improving price forecasting accuracy, which is important to support decision-making in risk management and economic planning in the fisheries sector. The findings contribute to understanding the dynamics of the yellowtail market and optimizing strategies for fisheries management.

References

Amri, I. F., Sari, W., Widyasari, V. A., & Haris, M. A. (2024). The ARIMA-GARCH Method in Case Study Forecasting the Daily Stock Price Index of PT. Jasa Marga (Persero). Eigen Mathematics Journal, 25-33. https://doi.org/10.29303/emj.v7i1.174

Andriyani, D., & Syahputra, T. W. (2021). Pengaruh Ekspor Ikan Tongkol/Tuna Indonesia Ke Jepang Terhadap Pertumbuhan Ekonomi Di Indonesia Dengan Model Dinamis Regression. Jurnal Ekonomi Regional Unimal, 15-22. https://doi.org/10.29103/jeru.v4i1.4815

Apriantari, N. K., Dirgayusa, I. G., & As-syakur, A. R. (2017). Pengaruh Hasil Tangkapan Ikan Tongkol (Euthynnus sp) dan Pendapatan Keluarga Nelayan Terhadap Tingkat Pendidikan Anak Keluarga Nelayan di Desa Seraya Timur, Kecamatan Karangasem, Kabupaten Karangasem. Journal of Marine and Aquatic Sciences, 242-250. https://doi.org/10.24843/jmas.2017.v3.i02.242-250

Clarissa, N., Nisrina, N., Irfan, M., & Taqiyyuddin, T. A. (2021). Penerapan Model ARCH-GARCH dalam Prediksi Harga Saham The Walt Disney. Jurnal Sains Matematika dan Statistika,, 108-120. http://dx.doi.org/10.24014/jsms.v7i2.13175

Karomah, Y., & Hendikawati, P. (2014). Estimasi Parameter Bootstrap pada Proses ARMA dan aplikasinya pada harga saham. UNNES Journal of Mathematics. https://journal.unnes.ac.id/sju/ujm/article/view/4343

Kiha, E. K., & Rindayati, W. (2013). Konvergensi Harga Pangan Pokok Antar Wilayah di Indonesia. Jurnal Ekonomi dan Kebijakan Pembangunan, 30-46. https://doi.org/10.29244/jekp.2.1.2013.30-46

Kusuma, Y. B. (2017). Proses Produksi Hasil Laut Dalam Upaya Memperoleh Produk Unggulan (Studi Kasus Pada UD Yanis Di Kelurahan Sukolilo Baru). Aplikasi Administrasi: Media Analisa Masalah Administrasi, 139-154. https://doi.org/10.30649/aamama.v20i2.78

Magfiroh, S., Sunarmo, A., & Primasari, D. (2018). Profesional Audit Dan Etika Kerja Terhadap Tindakan Whistleblowing. Jurnal Analisis Bisnis Ekonomi, 103-116. https://doi.org/10.31603/bisnisekonomi.v16i2.2619

Melyani, C. A., Nurtsabita, A., Shafa, G. Z., & Widodo, E. (2021). Peramalan inflasi di Indonesia menggunakan metode Autoregressive Moving Average (ARMA). Mathematics Education and Science, 67-74. https://doi.org/10.32665/james.v4i2.231

Muslihin, K. R., & Ruchjana, B. N. (2023). Model Autoregressive Moving Average (ARMA) untuk peramalan tingkat inflasi di Indonesia. Limits: Journal of Mathematics and Its Applications. http://dx.doi.org/10.12962/limits.v20i2.15098

Nasution, L. M. (2017). Statistik deskriptif. Hikmah, 49-55. https://e-jurnal.staisumatera-medan.ac.id/index.php/hikmah/article/view/16

Nikawanti, G., & Aca, R. (2021). Ecoliteracy: Membangun Ketahanan Pangan Dari Kekayaan Maritim Indonesia. Jurnal Kemaritiman: Indonesian Journal of Maritime, 149-166. https://doi.org/10.17509/ijom.v2i2.37603

Putro, E. A., Rimawati, E., & Vulandari, R. T. (2021). Prediksi Penjualan Kertas Menggunakan Metode Double Exponential Smoothing. Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 60-68. http://dx.doi.org/10.30646/tikomsin.v9i1.548

Silfani, D. (2022). Suplementasi Ikan Tongkol (Euthynnus Affinis) Terhadap Mutu Organoleptik, Kadar Protein Serta Daya Terima Risoles Sebagai Makanan Jajanan Anak Sekolah. http://repositoryperpustakaanpoltekkespadang.site/id/eprint/1328

Sintia, I., Pasarella, M. D., & Nohe, D. A. (2022). Perbandingan Tingkat konsistensi uji distribusi normalitas pada kasus tingkat pengangguran di Jawa. In Prosiding Seminar Nasional Matematika dan Statistika (Vol. 2). https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/844

Sitilamsyari, B., Asrizal, & Jolianis. (2014). Faktor-Faktor Yang Mempengaruhi permintaan konsumen Terhadap Ikan Tongkoldi Tiku Kecamatan Tanjung Mutiara Kabupatenagam. Pendidikan Ekonomi. https://www.neliti.com/publications/29858/efaktor-faktor-yang-mempengaruhipermintaankonsumen-terhadap-ikan-tongkoldi-tiku#cite

Sumiyati, Sandy, B. D., & Wilujeng, P. R. (2022). Metode Arch/Garch untuk memprediksi hubungan Economic Uncertainty akibat Pandemi Covid 19 dan Volatilitas Saham. Jurnal Bisnis dan Akuntansi, 117-130. https://doi.org/10.34208/jba.v24i1.1152

Tarlan, S. (2020). Analisis volatilitas dan value at risk pada sukuk indonesia dengan menggunakan model arch/garch (Bachelor's thesis, Jakarta. Fakultas Ekonomi dan Bisnis UIN Syarif Hidayatullah Jakarta. https://repository.uinjkt.ac.id/dspace/handle/123456789/38750?mode=full

Zakariya, F. (2020). Pemberdayaan Nelayan dalam Mambangun Kekuatan Ekonomi Melalui Pengolahan Ikan Di Desa Karangagung. Islamic Management and Empowerment Journal, 133-148. https://doi.org/10.18326/imej.v2i2.133-150

Downloads

Published

2024-10-03

How to Cite

Multiyaningrum, R., Amri, I. F., Haris, M. A., Salsabilla, H. A., Ginasputri, H. N. A., & Sintya, S. D. (2024). Forecasting the Volatility of Tuna Fish Prices in North Sumatra using the ARCH Method in the Period January - April 2024. EIGEN MATHEMATICS JOURNAL, 7(2), 93–101. https://doi.org/10.29303/emj.v7i2.236

Issue

Section

Articles

Most read articles by the same author(s)