Simulation of Spring Oscillations in Second-Order Differential Equations Using the Finite Difference Method

Authors

  • Muhammad Imam Al Paqih Department of Mathematics, Universitas Mataram
  • Rida Al Kausar Hardi Department of Mathematics, Universitas Mataram
  • Nuzla Af'idatur Robbaniyyah Department of Mathematics, Universitas Mataram

DOI:

https://doi.org/10.29303/emj.v8i2.321

Keywords:

Discretization Schemes, Iterative Formula, Error Analysis, Computational Modelling

Abstract

This study aims to simulate the motion of a damped spring oscillation, modeled by a second-order ordinary differential equation, using the Finite Difference Method (FDM). The main focus is on implementing the central finite difference scheme to discretize the equation, deriving an explicit iterative formula, and analyzing the oscillation dynamics and the accuracy of the numerical solution. The simulation was conducted with specific parameters (mass m = 1.0 kg, spring constant k = 10.0 N/m, damping coefficient c = 0.5 Ns/m) and various time steps (\Delta t = 0.5 s, 0.1 s, 0.01 s). The simulation results qualitatively show damped oscillatory behavior consistent with physical theory, where the amplitude decreases over time. The accuracy of the numerical solution, measured by the Symmetric Mean Absolute Percentage Error (SMAPE) against the analytical solution, was significantly influenced by \Delta t; the smallest time step (0.01 s) yielded the highest accuracy with a SMAPE of 0.4495%. The Finite Difference Method proved effective in analyzing the spring oscillation system, demonstrating that the proper selection of \Delta t is crucial for balancing accuracy and computational efficiency.

References

P. P. Darajat, “Simulasi numerik metode beda hingga non uniform gird dalam menyelesaikan masalah nilai batas persamaan diferensial biasa,” G-Tech: Jurnal Teknologi Terapan, vol. 4, no. 2, pp. 309–314, 2021. https://doi.org/10.33379/gtech.v4i2.633.

M. Malik and S. Mardiyati, “Syarat cukup osilasi persamaan diferensial linier homogen orde dua dengan redaman,” Teorema, vol. 1, p. 5.

M. R. Ghifari, R. A. Pramono, and K. N. Aziz, “Aplikasi gaya magnet pada fenomena osilasi teredam dalam sistem gerak harmonik sederhana,” Jurnal Penelitian Fisika Dan Terapannya (JUPITER), vol. 5, no. 1, pp. 16–22, 2023. https://doi.org/10.31851/jupiter.v5i1.11839.

R. M. Muspa and Y. Pramudya, “Studi numerik gerak osilasi teredam balok pada bidang miring,” JRST (Jurnal Riset Sains dan Teknologi), vol. 7, no. 1, pp. 59–64, 2023. https://doi.org/10.30595/jrst.v7i1.15315.

N. A. Robbaniyyah, A. S. Muliyanti, D. A. Malasso, and D. H. Pajri, “Simulasi dan akurasi numerik persamaan gelombang satu dimensi menggunakan aproksimasi metode beda hingga,” Semeton Mathematics Journal, vol. 1, no. 1, pp. 8–14, 2024. https://doi.org/10.29303/semeton.v1i1.204.

M. A. Septianda, M. Kiftiah, and Y. Yudhi, “Penyelesaian persamaan diferensial biasa orde dua dengan metode blok k-langkah,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 10, no. 4. https://jurnal.untan.ac.id/index.php/jbmstr/article/view/7126.

Y. Acu, B. P. Lapanporo, and A. A. Kushadiwijayanto, “Model sederhana gerak osilator dengan massa berubah terhadap waktu menggunakan metode runge kutta,” POSITRON, vol. 7, no. 2, pp. 42–47, 2017. https://jurnal.untan.ac.id/index.php/jpositron/article/view/23276.

H. A. Sitompul and E. W. Siahaan, “Solusi numerik persamaan diferensial biasa orde dua dengan sistem persamaan nonlinier,” Jurnal Ilmiah Teknik Sipil, vol. 11, no. 2, pp. 379–389, 2022. https://jurnal.universitasdarmaagung.ac.id/tekniksipil/article/view/2841.

H. W. Permata, A. Kusumastuti, and J. Juhari, “Solusi numerik model gerak osilasi vertikal dan torsional pada jembatan gantung,” Jurnal Riset Mahasiswa Matematika, vol. 1, no. 1, pp. 1–13, 2021. https://repository.uin-malang.ac.id/9469/.

M. R. Haizar, M. Rizki, N. A. Robbaniyyah, B. N. Syechah, S. Salwa, and L. Awalushaumi, “Numerical solution of the korteweg-de vries equation using finite difference method,” EIGEN MATHEMATICS JOURNAL, vol. 7, no. 1, pp. 1–7, 2024. https://doi.org/10.29303/emj.v7i1.190.

A. F. Rozanni, Pemodelan Sistem Pegas dengan Dua Beban Massa. PhD thesis, Universitas Islam Negeri Maulana Malik Ibrahim, 2020. http://etheses.uin-malang.ac.id/24742/.

S. Rahmatullah, Y. Arman, and A. Apriansyah, “Simulasi gerak osilasi model pegas bergandeng menggunakan metode runge-kutta,” Prisma Fisika, vol. 8, no. 3, pp. 180–184, 2020. https://doi.org/10.26418/pf.v8i3.43681.

A. N. Rais, R. Rousyati, I. J. Thira, D. N. Kholifah, N. Purwati, and Y. M. Kristania, “Evaluasi metode forecasting pada data kunjungan wisatawan mancanegara ke indonesia,” EVOLUSI: Jur nal Sains Dan Manajemen, vol. 8, no. 2, 2020. https://ejurnal.ung.ac.id/index.php/jjom/article/view/10068.

A. Z. Arifin, “Simulasi dampak penghalang pada gelombang tsunami menggunakan persamaan air dangkal dengan metode beda hingga,” Jambura Journal of Mathematics, vol. 3, no. 2, pp. 93–102, 2021. https://doi.org/10.34312/jjom.v3i2.10068.

O. Soegihardjo, “Simulasi komputer untuk analisis karakteristik model sistem pegas-peredam kejut-massa,” Jurnal Teknik Mesin, vol. 3, no. 1, pp. 29–34, 2001.

M. Cahyadi and S. N. Khotimah, “Visualisasi solusi analitik dari osilasi pegas dengan menggunakan visual basic for application (vba),” 2015. https://ifory.id/proceedings/2015/z4pZjcJkq/snips 2015 melisa cahyadi 4b2be883495be3878e3f02662b89b460.pdf.

Downloads

Published

2025-12-17

How to Cite

Al Paqih, M. I., Hardi, R. A. K., & Robbaniyyah, N. A. (2025). Simulation of Spring Oscillations in Second-Order Differential Equations Using the Finite Difference Method. EIGEN MATHEMATICS JOURNAL, 8(2), 191–199. https://doi.org/10.29303/emj.v8i2.321

Issue

Section

Articles