Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2019-12-31

Mengatasi Error Berkorelasi Menggunakan Metode Transformasi Prewhitening pada Regresi Nonparametrik Kernel Bivariat

Universitas Mataram
ARMA (𝑝 π‘ž) Epanechnikov Kernel Function Transformasi Prewhitening

Abstract

Suppose that given 𝑛 data {(𝑋1𝑑, 𝑋2𝑑, π‘Œπ‘‘)}𝑛 with nonparametric regression model :𝑑=1π‘Œπ‘‘Β  = π‘š(𝑋1𝑑, 𝑋2𝑑) + πœ€π‘‘ ; 𝑑 = 1,2, β‹― , 𝑛with π‘š(𝑋𝑑) is a regression function and πœ€π‘– is a random errors. In nonparametric regression often found correlated errors, i.e. the error value does not meet the identical and independent assumptions. Correlated errors will adversely affect the estimation model. Correlated errors can be resolved by prewhitening transformation method, a method where the error is assumed to follow the model ARMA (𝑝, π‘ž). Applied on data is shown that regression model was obtained with correlated errors. The error obtained from the conventional Kernel regression model follows the AR(1) model with the value βˆ…1= 0.932. After the prewhitening transformation, the kernel regression model results from the prewhitening transformation with uncorrelated errors. The MSE value of the conventional Kernel estimation modal is 639203.308 smaller than the MSE value of the estimated Kernel prewhitening transformation model that is 290303.832, so the Kernel estimator resulting from prewhitening transformation is more efficient than conventional Kernel estimator.

References

  1. Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. 1994. Time Series Analysis : Forecasting and Control. 3rd ed. Prentice Hall. Inc., New York.
  2. Budiantara, I. N., dkk. 2006. Pemodelan B-Spline dan MARS pada Nilai Ujian Masuk terhadap IPK Mahasiswa Jurusan Disain Komonikasi Visual UK. Petra Surabaya. Jurnal Teknik Industri, Vol. 8, No. 1, Hal. 1.
  3. Carmona, A.R. 2004. Statistical of Financial Data in S-Plus. United State of America : Springer.
  4. Data Inflasi-Bank Sentral Republik Indonesia. Diakses pada tanggal 1 November 2018 pukul 23:07.
  5. Eubank, R.L. 1999. Spline Smoothing and Nonparametric Regression 2nd Edition. Marcel Dekker Inc : New York.
  6. Hadijati, M. 2005. Estimasi Kernel dalam Regresi Nonparametrik dengan Error Berkorelasi. Tesis. Surabaya : FMIPA Insitut Teknologi Sepuluh November.
  7. Hardle, W. 1990. Smoothing Techniques With Implementation in S. Springer-Verlag : New York.
  8. ________. 1994. Applied Nonparametric Regression. Berlin : Humboldt University..
  9. IHSG,http://finance.yahoo.com/quote/%5EJKSE/history/. 10 November 2018 pukul 00:33 WITA.
  10. Kurniasih, D. 2013. Efisiensi Relatif Estimator Fungsi Kernel Gassian Terhadap Estimator Polinomial Dalam Peramalan USD Terhadap JPY. Skripsi. Semarang : FMIPA Universitas Negeri Semarang.
  11. Kurs Referensi (JISDOR) - Bank Sentral Republik Indonesia. 1 November 2018 pukul 23:12 WITA.
  12. Montgomery, D.C. Design and Analysis of Experiments. John Wiley and Sons, Inc., Arizona.
  13. Nonparametric Regression With Correlated Errors. Statistical Science, Vol. 16, No.2.
  14. Tabel Durbin-Watson. http://www.standford.edu. Diakses pada tanggal 28 September 2019 pukul 15:25 WITA.
  15. Wei, W.S. 1990. Time Series Analysis Univariate and Multivariate Methods. Addison-Wesley Publishing Company, Inc., Canada.
  16. Xiao, Z., Linton, O.B., Carrol, R.J., and Mammen, E. 2002. More Efficient Kernel Estimation in Regression with Autocorrelated Errors. Cowles Foundation.
  17. Yaffee, R.A., and McGee, M. Introduction to Time Series Analysis and Forecasting. Academic Press, Inc., New York.
  18. Yang, Y. 2001. Nonparametric Regression With Dependent Errors. Bernoulli, Vol. 7, No. 4.