Sifat-Sifat Graf Pembagi Nol pada Gelanggang Polinom Kuosien (Z_p [x])/〈x^(n+1) 〉 ×(Z_q [x])/〈x^(n+1) 〉

Dais Alifian Fatahillah, Ni Wayan Switrayni

Abstract


Zero-divisor graph is an undirectedgraphwhose vertices are zero-divisors of a commutative ring and edges defined as  if and only if .Wicaksono (2013) gave some characteristics of graph zero-divisor in the modulary integer ring. This research aims to represent the zero-divisor elements of the polynomial kuosien ring where are prime numbers and  into a graph called the zero-divisor graph The method used in this research is a deduktive method. The result shows that the zero divisor graph obtained from polynomial kuosien ring is complete bipartit graph with some characteristics related to its girth, ecccentricity, radius and diameter.


Keywords


polynomial ring, zero-divisor, girth, eccentricity, radius, diameter

References


Rotman, J. J, 2015, A First Course In Abstract Algebra With Applications, Third Edition. University of Illinois

Rosen, K, 1983, Elementary Number Theory And Its Applications, ADSION-WESLEY Publishing Company.

Fraleigh, J.B, 2013, A First Course in Abstract Algebra (7th ed). United Kingdom: Pearson Education Limited.

Dummit, S. D., & Foote, M. R. (2004). Abstrac Algebra (Third ed.). New York: John Wiley & Sons, Inc.

Munir, R., 2009, Matematika Diskrit Edisi Ketiga, Informatika, Bandung.

Wicaksono, S. A. dan Soleha, 2013, Kajian Sifat-Sifat Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan, Jurnal Sains dan Seni Pomits, Vol.2 No.1, Jurusan Matematika FMIPA ITS, Surabaya

Anderson, D. D. dan Philip S. L, 1999, The Zero-Divisor Graph of a commutative Ring, Jurnal of Algebra, 211, Mathematic Departement, The University of Tenessee, Knoxvile.

Abdussakir. (2017). Radius, Diameter, Multiplisitas Sikel, dan Dimensi Metrik Graf Komuting dari Grup Dihedral. Jurnal Matematika “Mantik”, 3(1), 1-4. doi: 10.15642/mantik.2017.3.1.1-4




DOI: https://doi.org/10.29303/emj.v3i1.51

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International LicensePreserved in LOCKSS, based at Stanford University Libraries, United Kingdom, through PKP Private LOCKSS Network program.


Indexed by:

   

  

e-ISSN : 2615-3270 || p-ISSN : 2615-3599