The Prime Submodule Of The Integer Module Over Itself

Authors

  • Muhammad Rijal Alfian Program Studi Matematika, FMIPA, Universitas Mataram
  • Fariz Maulana Department of Mathematics, Institut Teknologi Bandung
  • Ni Wayan Switrayni Program Studi Matematika, FMIPA, Universitas Mataram
  • Qurratul Aini Program Studi Matematika, FMIPA, Universitas Mataram
  • Dwi Noorma Putri Fakultas Pertanian, Universitas Mataram
  • I Gede Adhitya Wisnu Wardhana Program Studi Matematika, FMIPA, Universitas Mataram

DOI:

https://doi.org/10.29303/emj.v5i1.132

Keywords:

Ideal, Prime Submodule, Integer Module

Abstract

One of the sciences used in digital security systems is cryptography. Cryptography is closely related to the integer system, especially prime numbers. Prime numbers themselves have been abstracted a lot. One form of abstraction of prime numbers is the prime ideal. Previous studies have proven that an Ideal  is said to be a prime ideal on  if and only if I is constructed by a prime element. Other studies have also shown how the prime ideal develops. One of them is the research result of Dauns, where the prime ideal form is developed in the form of a prime submodule. A prime submodule is one of the objects in the module, which is an abstraction of prime numbers. Based on these things, it is exciting if the properties of the prime submodule are applied to other module forms, one of which is the integer module.

References

Facchini, A. (1998). Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules (1st ed., Vol. 1). Birkhauser.

Juliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021). Some Characteristics of Cyclic Prime, Weakly Prime and Almost Prime Submodule of Gaussian Integer Modulo over Integer. AIP Conference Proceedings, 2329(February). https://doi.org/10.1063/5.0042586

Juliana, R., Wardhana, I. G. W. W., & Irwansyah, I. (2020). Some Characteristics of Prime Submodules of Gaussian Integer Modulo over Integer. Proceeding International Conference on Science (ICST), 209–213.

Maulana, F., Wardhana, I. G. A. W., & Switrayni, N. W. (2019). Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss. EIGEN MATHEMATICS JOURNAL, 1(1), 1. https://doi.org/10.29303/emj.v1i1.29

Maulana, F., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2018). Bilangan Prima dan Bilangan tak Tereduksi pada Bilangan bulat Gauss. Prosiding Seminar Nasional APPPI II, 383–387.

Wardhana, I. G. A. W., & Astuti, P. (2014). Karakteristik Submodul Prima Lemah dan Submodul Hampir Prima pada Z-Modul Zn. Jurnal Matematika & Sains, 19(1), 16–20.

Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121–128. https://doi.org/10.17654/NT038020121

Wardhana, I. G. A. W., & Maulana, F. (2021). Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial. 7, 9–17.

Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1), 012011. https://doi.org/10.1088/1742-6596/2106/1/012011

Downloads

Published

2022-06-30

How to Cite

Alfian, M. R., Maulana, F., Switrayni, N. W., Aini, Q., Putri, D. N., & Wardhana, I. G. A. W. (2022). The Prime Submodule Of The Integer Module Over Itself. EIGEN MATHEMATICS JOURNAL, 5(1), 27–30. https://doi.org/10.29303/emj.v5i1.132

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>