Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-06-30

The Prime Submodule Of The Integer Module Over Itself

Program Studi Matematika FMIPA Universitas Mataram
Department of Mathematics Institut Teknologi Bandung
Program Studi Matematika FMIPA Universitas Mataram
Program Studi Matematika FMIPA Universitas Mataram
Fakultas Pertanian Universitas Mataram
University of Mataram
Ideal Prime Submodule Integer Module

Abstract

One of the sciences used in digital security systems is cryptography. Cryptography is closely related to the integer system, especially prime numbers. Prime numbers themselves have been abstracted a lot. One form of abstraction of prime numbers is the prime ideal. Previous studies have proven that an Ideal  is said to be a prime ideal on  if and only if I is constructed by a prime element. Other studies have also shown how the prime ideal develops. One of them is the research result of Dauns, where the prime ideal form is developed in the form of a prime submodule. A prime submodule is one of the objects in the module, which is an abstraction of prime numbers. Based on these things, it is exciting if the properties of the prime submodule are applied to other module forms, one of which is the integer module.

References

  1. Facchini, A. (1998). Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules (1st ed., Vol. 1). Birkhauser.
  2. Juliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021). Some Characteristics of Cyclic Prime, Weakly Prime and Almost Prime Submodule of Gaussian Integer Modulo over Integer. AIP Conference Proceedings, 2329(February). https://doi.org/10.1063/5.0042586
  3. Juliana, R., Wardhana, I. G. W. W., & Irwansyah, I. (2020). Some Characteristics of Prime Submodules of Gaussian Integer Modulo over Integer. Proceeding International Conference on Science (ICST), 209–213.
  4. Maulana, F., Wardhana, I. G. A. W., & Switrayni, N. W. (2019). Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss. EIGEN MATHEMATICS JOURNAL, 1(1), 1. https://doi.org/10.29303/emj.v1i1.29
  5. Maulana, F., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2018). Bilangan Prima dan Bilangan tak Tereduksi pada Bilangan bulat Gauss. Prosiding Seminar Nasional APPPI II, 383–387.
  6. Wardhana, I. G. A. W., & Astuti, P. (2014). Karakteristik Submodul Prima Lemah dan Submodul Hampir Prima pada Z-Modul Zn. Jurnal Matematika & Sains, 19(1), 16–20.
  7. Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121–128. https://doi.org/10.17654/NT038020121
  8. Wardhana, I. G. A. W., & Maulana, F. (2021). Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial. 7, 9–17.
  9. Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1), 012011. https://doi.org/10.1088/1742-6596/2106/1/012011