Analisis Automorfisma Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan
DOI:
https://doi.org/10.29303/emj.v1i1.11Keywords:
Ring, Graph Automorphism, star zero-divisor graph, Complete zero-divisor graph, Complete bipartite, zero-divisor graphAbstract
Zero-divisor graphs of a commutative ring with identity has 3 specific simple forms, namely star zero-divisor graph, complete zero-divisor graph and complete bipartite zero-divisor graph. Graph automorphism is one of the interesting concepts in graph theory. Automorphism of graph G is an isomorphism from graph G to itself. In other words, an automorphism of a graph G is a permutation φ of the set points V(G) which has the property that (x,y) in E(G) if and only if (φ(x),φ(y)) in E(G), i.e. φ preserves adjacency.This study aims to analyze the form of zero-divisor graph automorphisms of a commutative ring with identity formed. The method used in this study was taking sampel of each zero-divisor graph to represent each graph. Thus, pattern and shape of automorphism of each graph can be determined. Based on the results of this study, a star zero-divisor graph with pattern K_1,(p-1), where p is prime, has (p-1)! automorphisms, a complete zero-divisor graph with pattern K_(p-1), where p is prime, has (p-1)! automorphisms, and a complete bipartite zero-divisor graph with pattern K_(p-1),(q-1), where p is prime, has (p-1)!(q-1)! automorphisms, when p not equals to q and 2((p-1)!(q-1)!) automorphisms when p=q.References
Anderson, D. D. dan Philip S. Livingstone, 1999, The Zero-Divisor Graph of a commutative Ring, Jurnal of Algebra, 211, Mathematic Departement, The University of Tenessee, Knoxvile.
Arifin, A., 2000, Aljabar, ITB Bandung press, Bandung.
Munir, R., 2009, Matematika Diskrit Edisi Ketiga, Informatika, Bandung.
Suryoto, 2011, Automorfisma Graph, Jurnal Matematika dan Komputer, 4 No. 3, Jurusan Matematika FMIPA UNDIP, Semarang.
Wicaksono, S. A. dan Soleha, 2013, Kajian Sifat-Sifat Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan, Jurnal Sains dan Seni Pomits, Vol.2 No.1, Jurusan Matematika FMIPA ITS, Surabaya.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in the Eigen Mathematics Journal will be available for free reading and downloading. The license applied to this journal is Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA).
Similar Articles
- Baiq Devi Rachmawati, Qurratul Aini, Estimasi Parameter Regresi Linear Menggunakan Regresi Kuantil , EIGEN MATHEMATICS JOURNAL: Vol. 1 No. 2 Desember 2018
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Puguh Riawang, Mamika Ujianita Romdhini, Irwansyah -, Perbandingan Algoritma A* (A star) dan Algoritma IDA* (Iterative Deepening A* Pada Permainan Sliding Puzzle , EIGEN MATHEMATICS JOURNAL: Vol. 2 No. 2 Desember 2019
- Dais Alifian Fatahillah, Ni Wayan Switrayni, Sifat-Sifat Graf Pembagi Nol pada Gelanggang Polinom Kuosien (Z_p [x])/〈x^(n+1) 〉 ×(Z_q [x])/〈x^(n+1) 〉 , EIGEN MATHEMATICS JOURNAL: Vol. 3 No. 1 Juni 2020
- Muklas Maulana, Ni Wayan Switrayni, Banyak Pohon Pembangun pada Graf Barbell , EIGEN MATHEMATICS JOURNAL: Vol. 2 No. 2 Desember 2019
- I Gede Adhitya Wisnu Wardhana, Ni Wayan Switrayni, Qurratul Aini, Submodul Prima Lemah dan Submodul Hampir Prima Pada Z‐modul M_2x2 (Z_9) , EIGEN MATHEMATICS JOURNAL: Vol. 1 No. 1: Juni 2018
- Muhammad Taufan, Mamika Ujianita Romdhini, Ni Wayan Switrayni, Analisis Keberhinggaan Matriks Representasi atas Grup Berhingga , EIGEN MATHEMATICS JOURNAL: Vol. 1 No. 1: Juni 2018
- Husni Fitroti, Mamika Ujianita Romdhini, Ni Wayan Switrayni, Hill Cipher Algorithm with Generalized Fibonacci Matrix in Message Encoding , EIGEN MATHEMATICS JOURNAL: Vol. 4 No. 2 Desember 2021
- Muhammad Rijal Alfian, Fariz Maulana, Ni Wayan Switrayni, Qurratul Aini, Dwi Noorma Putri, I Gede Adhitya Wisnu Wardhana, The Prime Submodule Of The Integer Module Over Itself , EIGEN MATHEMATICS JOURNAL: Vol. 5 No. 1 Juni 2022