The Extended Metric Space on Max-Plus Algebra

Authors

  • Lalu Riski Wirendra Putra Department of Mathematics, Universitas Mataram, Indonesia
  • Qurratul Aini Department of Mathematics, Universitas Mataram, Indonesia
  • Muhammad Rijal Alfian Department of Mathematics, Universitas Mataram, Indonesia

DOI:

https://doi.org/10.29303/emj.v8i1.254

Keywords:

Max Plus Algebra, metric space, sequence, convergrence

Abstract

Max-Plus Algebra is the newly emerged mathematical object as one of the algebraic structures. Max Plus Algebra is a semi-ring with the maximum operation as its addition and the plus operation as its multiplication. In 2012, Carl et.al. established a novel notion about metric in max-plus geometry which is the semi-module over the semi-ring with maximum and addition biner operations. The writer researched to discover the distance function or metric, especially for the extended real-valued metric of Max-Plus Algebra and its properties with maximum and addition biner operations. By using both direct and indirect proof methods, the distance function of Max Plus Algebra and its topological properties were obtained.

References

C. Wang, Y. Xia, and Y. Tao, “Ordered structures of polynomials over max-plus algebra,” Symmetry, vol. 13, no. 7, p. 1137, 2021. https://doi.org/10.3390/sym13071137.

P. Butkovič, “Max-algebra: the linear algebra of combinatorics?,” Linear Algebra and its applications, vol. 367, pp. 313–335, 2003. https://doi.org/10.1016/S0024-3795(02)00655-9.

J. Komenda, S. Lahaye, J.-L. Boimond, and T. van den Boom, “Max-plus algebra in the history of discrete event systems,” Annual Reviews in Control, vol. 45, pp. 240–249, 2018. https://doi.org/10.1016/j.arcontrol.2018.04.004.

B. De Schutter, T. van den Boom, J. Xu, and S. S. Farahani, “Analysis and control of max-plus linear discrete-event systems: An introduction,” Discrete Event Dynamic Systems, vol. 30, pp. 25–54, 2020. https://doi.org/10.1007/s10626-019-00294-w.

M. Masriani, Q. Aini, and S. Bahri, “Fuzzy metric space and its topological properties,” EIGEN MATHEMATICS JOURNAL, pp. 74–79, 2021. https://doi.org/10.29303/emj.v4i2.95.

L. Zicky, I. G. N. R. Usadha, et al., “Fixed point theorem on fuzzy metric space,” in Journal of Physics: Conference Series, vol. 1218, p. 012062, IOP Publishing, 2019. https://doi.org/10.1088/1742-6596/1218/1/012062.

A. Ansar and H. Hikmah, “Eksistensi titik tetap pemetaan c-kontraktif diperumum pada ruang metrik parsial kompleks,” JMPM: Jurnal Matematika dan Pendidikan Matematika, vol. 6, no. 2, pp. 90–101, 2021. https://doi.org/10.26594/jmpm.v6i2.2138.

S. Sunarsini, S. Sadjidon, and S. E. Setiawan, “Teorema titik tetap untuk dua pemetaan di ruang metrik cone rectangular,” UNEJ e-Proceeding, pp. 309–318, 2022.

U. Carl, K. W. O’Neill, and N. Ryder, “Establishing a metric in max-plus geometry,” Rose-Hulman Undergraduate Mathematics Journal, vol. 13, no. 2, p. 10, 2012. https://scholar.rose-hulman.edu/rhumj/vol13/iss2/10.

A. Wahono and A. Ekayanti, “Pemetaan dalam ruang metrik-g,” Euclid, vol. 6, no. 1, pp. 12–24, 2019. https://doi.org/10.33603/e.v6i1.1457.

I. Kaplansky, Set theory and metric spaces, vol. 298. American Mathematical Society, 2020.

Downloads

Published

2025-03-12

How to Cite

Putra, L. R. W., Aini, Q., & Alfian, M. R. (2025). The Extended Metric Space on Max-Plus Algebra. EIGEN MATHEMATICS JOURNAL, 8(1), 7–12. https://doi.org/10.29303/emj.v8i1.254

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>