Algebraic Structures and Combinatorial Properties of Unit Graphs in Rings of Integer Modulo with Specific Orders

Authors

  • Sahin Two Lestari Universitas Mataram
  • Putu Kartika Dewi Universitas Pendidikan Ganesha
  • I Gede Adhitya Wisnu Wardhana Universitas Mataram
  • I Nengah Suparta Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.29303/emj.v7i2.235

Keywords:

numerical invariant, unit graph, ring of integer modulo

Abstract

Unit graph is the intersection of graph theory and algebraic structure, which can be seen from the unit graph representing the ring modulo n in graph form. Let R be a ring with nonzero identity. The unit graph of R, denoted by G(R), has its set of vertices equal to the set of all elements of R; distinct vertices x and y are adjacent if and only if x + y is a unit of R. In this study, the unit graph, which is in the ring of integers modulo n, denoted by G(Zn). It turns out when n is 2^k, G(Zn) forms a complete bipartite graph for k∈N, whereas when n is prime, G(Zn) forms a complete (n+1)/2-partites graph. Additionally, the numerical invariants of the graph G(Zn), such as degree, chromatic number, clique number, radius, diameter, domination number, and independence number complement the characteristics of G(Zn) for further research.

References

Ashrafi, N., Maimani, H. R., Pournaki, M. R., & Yassemi, S. (2010). Unit graphs associated with rings. Communications in Algebra, 38(8), 2851-2871. doi: https://doi.org/10.1080/00927870903095574

Isaev, M., & Kang, M. (2021). On the chromatic number of graphons. doi: https://doi.org/10.48550/arXiv.2109.07773

Jafari, S. H., & Musawi, S. R. (2024). Diameter of 2-distance graphs. doi: https://doi.org/10.48550/arXiv.2403.07646

Li, Z., & Su, H. (2021). The radius of unit graphs of rings. AIMS Math, 6, 11508-11515. doi: https://doi.org/10.3934/math.2021667

Malik, D. P., Husni, M. N., Miftahurrahman, M., Wardhana, I. G. A. W., & Semil @ Ismail, G. (2024). The chemical topological graph associated with the nilpotent graph of a modulo ring of prime power order. Journal of Fundamental Mathematics and Applications (JFMA), 7(1), 1-9. doi: https://doi.org/10.14710/jfma.v0i0.20269

Nurhabibah, N., Wardhana, I. G. A. W., & Switrayni, N. W. (2023). Numerical invariants of coprime graph of a generalized quaternion group. Journal of the Indonesian Mathematical Society, 36-44. doi: https://jims-a.org/index.php/jimsa/article/view/1245

Pirzada, S., & Altaf, A. (2022). Line graphs of unit graphs associated with the direct product of rings. Koreanass Journal of Mathematics, 30(1), 53-60. doi: https://doi.org/10.11568/kjm.2022.30.1.53

West, D. B. (2001). Introduction to graph theory (2nd ed.). Prentice Hall.

Yip, C. H. (2020). On the directions determined by Cartesian products and the clique number of generalized Paley graphs. doi: https://doi.org/10.48550/arXiv.2010.01784

Downloads

Published

2024-09-20

How to Cite

Lestari, S. T., Dewi, P. K., Wardhana, I. G. A. W., & Suparta, I. N. (2024). Algebraic Structures and Combinatorial Properties of Unit Graphs in Rings of Integer Modulo with Specific Orders. EIGEN MATHEMATICS JOURNAL, 7(2), 89–92. https://doi.org/10.29303/emj.v7i2.235

Issue

Section

Articles

Most read articles by the same author(s)