Hyper-Wiener and Szeged Indices of non-Coprime Graphs of Modulo Integer Groups

Authors

  • Lalu Hasan Ghoffari Department of Mathematics, Universitas Mataram, Indonesia
  • I Gede Adhitya Wisnu Wardhana Department of Mathematics, Universitas Mataram, Indonesia
  • Putu Kartika Dewi Department of Mathematics, Universitas Pendidikan Ganesha, Indonesia
  • I Nengah Suparta Department of Mathematics, Universitas Pendidikan Ganesha, Indonesia

DOI:

https://doi.org/10.29303/emj.v8i1.244

Keywords:

non-Coprime Graph, Hyper-Wiener Index, Szeged Index

Abstract

The non-coprime graph of the integer modulo group is a graph whose vertices represent the elements of the integer modulo group, excluding the identity element. Two distinct vertices are adjacent if and only if their orders are not relatively prime. This study explores two topological indices, the Hyper-Wiener index and the Szeged index, in the non-coprime graph of the integer modulo-n group. The results reveal that these indices are equal when the order is a prime power but differ when the order is the product of two distinct prime numbers. This research provides new insights into the patterns and characteristics of these indices, contributing to a broader understanding of the application of graph theory to abstract group structures.

References

N. Deo, Graph theory with applications to engineering and computer science. Courier Dover Publications, 2017

S. Delen, R. H. Khan, M. Kamran, N. Salamat, A. Q. Baig, I. N. Cangul, and M. K. Pandit, “Vedegree, ev-degree, and degree-based topological indices of fenofibrate,” Journal of Mathematics, 2022. https://doi.org/10.1155/2022/4477808.

S. Ghazali, N. H. Sarmin, N. I. Alimon, and F. Maulana, “The first zagreb index of the zero divisor graph for the ring of integers modulo power of primes,” Journal of Fundamental and Applied Sciences, vol. 19, no. 5, pp. 892–900, 2023. https://doi.org/10.11113/mjfas.v19n5.2980.

D. P. Malik, M. N. Husni, M. Miftahurrahman, I. G. A. W. Wardhana, and S. Ghazali, “The chemical topological graph associated with the nilpotent graph of a modulo ring of prime power order,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 7, no. 1, pp. 1–9, 2024. https://doi.org/10.14710/jfma.v0i0.20269.

R. B. Pratama, F. Maulana, and I. G. A. W. Wardhana, “Sombor index and its generalization of power graph of some group with prime power order,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 7, no. 2, pp. 163–173, 2024. https://doi.org/10.14710/jfma.v7i2.22552.

L. R. W. Putra, Z. Y. Awanis, S. Salwa, Q. Aini, and I. G. A. W. Wardhana, “The power graph representation for integer modulo group with power prime order,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1393–1400, 2022. https://doi.org/10.30598/barekengvol17iss3pp1393-1400.

E. Y. Asmarani, S. T. Lestari, D. Purnamasari, A. G. Syarifudin, S. Salwa, and I. G. A. W. Wardhana, “The first zagreb index, the wiener index, and the gutman index of the power of dihedral group,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 4, pp. 513–520, 2023. http://dx.doi.org/10.18860/ca.v7i4.16991.

M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “The harmonic index and the gutman index of coprime graph of integer group modulo with order of prime power,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, 2022. https://doi.org/10.30598/barekengvol16iss3pp961-966.

N. Nurhabibah, D. P. Malik, H. Syafitri, and I. G. A. W. Wardhana, “Some results of the non-coprime graph of a generalized quaternion group for some n,” in AIP Conference Proceedings, vol. 2641, 2022. https://doi.org/10.1063/5.0114975.

J. B. fraleigh, A First Course in Abstract Algebra. Pearson Education Limited, US, 2014.

W. U. Misuki, I. G. A. W. Wardhana, N. W. Switrayni, and I. Irwansyah, “Some results of non-coprime graph of the dihedral group d2n for na prime power,” in AIP Conference Proceedings, vol. 2329, 2021. https://doi.org/10.1063/5.0042587.

M. Masriani, R. Juliana, A. G. Syarifudin, I. G. A. W. Wardhana, I. Irwansyah, and N. W. Switrayni, “Some result of non-coprime graph of integers modulo n group for n a prime power,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 3, no. 2, pp. 107–111, 2024. https://doi.org/10.14710/jfma.v3i2.8713.

D. J. Klein, I. Lukovits, and Gutman, “On the definition of the hyper-wiener index for cycle-containing structures,” Journal of chemical information and computer sciences, vol. 35, no. 1, pp. 50–52, 1995. https://doi.org/10.1021/ci00023a007.

I. Gutman and A. A. Dobrynin, “The szeged index-a success story,” Graph Theory Notes New York, vol. 34, pp. 37–44, 1998. https://www.researchgate.net/publication/285354388 The Szeged index - A success story.

Downloads

Published

2025-03-10

How to Cite

Ghoffari, L. H., Wardhana, I. G. A. W., Dewi, P. K., & Suparta, I. N. (2025). Hyper-Wiener and Szeged Indices of non-Coprime Graphs of Modulo Integer Groups. EIGEN MATHEMATICS JOURNAL, 8(1), 1–6. https://doi.org/10.29303/emj.v8i1.244

Issue

Section

Articles

Most read articles by the same author(s)